在一个月黑风高的夜晚,突然收到现网生产环境Kafka消息积压的告警,梦中惊醒啊,马上起来排查日志。

问题现象

消费请求卡死在查找Coordinator

Coordinator为何物?Coordinator用于管理Consumer Group中各个成员,负责消费offset位移管理和Consumer Rebalance。Consumer在消费时必须先确认Consumer Group对应的Coordinator,随后才能join Group,获取对应的topic partition进行消费。

那如何确定Consumer Group的Coordinator呢?分两步走:

1、一个Consumer Group对应一个__consumers_offsets的分区,首先先计算Consumer Group对应的__consumers_offsets的分区,计算公式如下:

__consumers_offsets partition# = Math.abs(groupId.hashCode() % groupMetadataTopicPartitionCount,其中groupMetadataTopicPartitionCount由offsets.topic.num.partitions指定。

2、1中计算的该partition的leader所在的broker就是被选定的Coordinator。

定位过程

Coordinator节点找到了,现在看看Coordinator是否有问题:

不出所料,Coordinator对应分区Leader为-1,消费端程序会一直等待,直到Leader选出来为止,这就直接导致了消费卡死。

为啥Leader无法选举?Leader选举是由Controller负责的。Controller节点负责管理整个集群中分区和副本的状态,比如partition的Leader选举,topic创建,副本分配,partition和replica扩容等。现在我们看看Controller的日志:

1.6月10日15:48:30,006 秒Broker 1成为controller

此时感知的节点为1和2,节点3 在zk读不出来:

31秒847的时候把__consumer_offsets的分区3的Leader选为1,ISR为[1,2],leader_epoch为14:

再过1秒后才感知到Controller发生变化,自身清退

2.Broker 2在其后几百毫秒后(15:48:30,936)也成为Controller

但是Broker2 是感知到Broker 3节点是活的,日志如下:

注意这个时间点,Broker1还没在zk把__consumer_offsets的分区3 的Leader从节点3改为1,这样Broker 2还认为Broker 3是Leader,并且Broker 3在它认为是活的,所以不需要重新选举Leader。这样一直保持了相当长的时间,即使Broker 1已经把这个分区的Leader切换了,它也不感知。

3.Broker 2在12号的21:43:19又感知Broker 1网络中断,并处理节点失败事件:

因为Broker 2内存中认为__consumer_offsets分区3的Leader是broker 3,所以不会触发分区3的Leader切换。

Broker 2但是在处理失败的节点Broker 1时,会把副本从ISR列表中去掉,去掉前会读一次zk,代码如下:

但是发现zk中分区3的Leader已经变为1,ISR列表为[1,2],当要去掉的节点1就是Leader的时候,Leader就会变为-1, ISR只有[2],从日志也可以看到:

这样分区3 的Leader一直为-1,直到有新的事件触发节点2重新选举才能恢复(例如重启某个节点)。

根因总结

出现网络异常后,由于新老controller之间感知的可用节点不同,导致新controller对某个分区的Leader在内存中的信息与zk记录元数据的信息不一致,导致controller选举流程出现错误,选不出Leader。 需要有新的选举事件才能触发Leader选出来,例如重启。

问题总结

这是一个典型的由于网络异常导致脑裂,进而出现了多个Controller,华为云分布式消息服务(DMS)Kafka经过电信级的可靠性验证,已经完美解决了这些问题,点击这里了解更多~

Kafka无法消费!?究竟是bug的“沦陷”还是配置的“扭曲”?的更多相关文章

  1. Kafka重复消费和丢失数据研究

    Kafka重复消费原因 底层根本原因:已经消费了数据,但是offset没提交. 原因1:强行kill线程,导致消费后的数据,offset没有提交. 原因2:设置offset为自动提交,关闭kafka时 ...

  2. Flume简介与使用(三)——Kafka Sink消费数据之Kafka安装

    前面已经介绍了如何利用Thrift Source生产数据,今天介绍如何用Kafka Sink消费数据. 其实之前已经在Flume配置文件里设置了用Kafka Sink消费数据 agent1.sinks ...

  3. IM群聊消息究竟是存1份(即扩散读)还是存多份(即扩散写)?

    1.前言 IM的群聊消息,究竟存1份(即扩散读方式)还是存多份(即扩散写方式)? 上一篇文章<IM群聊消息的已读回执功能该怎么实现?>是说,“很容易想到,是存一份”,被网友们骂了,大家争论 ...

  4. Kafka 温故(五):Kafka的消费编程模型

    Kafka的消费模型分为两种: 1.分区消费模型 2.分组消费模型 一.分区消费模型 二.分组消费模型 Producer : package cn.outofmemory.kafka; import ...

  5. kafka查看消费数据

    一.如何查看 在老版本中,使用kafka-run-class.sh 脚本进行查看.但是对于最新版本,kafka-run-class.sh 已经不能使用,必须使用另外一个脚本才行,它就是kafka-co ...

  6. kafka多线程消费及处理和手动提交处理方案设计[转]

    转自:http://blog.csdn.net/haoyifen/article/details/54692503 kafka与其他消息队列不同的是, kafka的消费者状态由外部( 消费者本身或者类 ...

  7. kafka 多线程消费

    一. 1.Kafka的消费并行度依赖Topic配置的分区数,如分区数为10,那么最多10台机器来并行消费(每台机器只能开启一个线程),或者一台机器消费(10个线程并行消费).即消费并行度和分区数一致. ...

  8. kafka多线程消费

    建立kafka消费类ConsumerRunnable ,实现Runnable接口: import com.alibaba.fastjson.JSON; import com.alibaba.fastj ...

  9. 【SparkStreaming学习之四】 SparkStreaming+kafka管理消费offset

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 scala-2.10.4(依赖jdk1.8) spark ...

随机推荐

  1. java 8 stream使用

    使用stream代替循环的方案 1.定义一个Article类包括标题.作者.标签 private class Article { private final String title; private ...

  2. 自学php【二】 PHP计算时间加一天

    最近几天在做一个项目,主要是将SQLserver数据到MySQL数据库,一个url跑一次 同步一次昨天的数据,由于很多数据需要同步,所以做了一个操作界面的,一个单纯跑url的 在其中涉及到了对于时间的 ...

  3. 使ThinkPHP(3.2.3)的分页类支持Bootstrap风格

    ThinkPHP 3.2.3自带的分页类位于:/ThinkPHP/Library/Think/Pages.class.php ,官方文档在这里:ThinkPHP3.2.3数据分页 Pages.clas ...

  4. RabbitMQ系列(五)--高级特性

    在上一篇文章讲解MQ消息可靠性投递和幂等性中有提到confirm机制的重要性,现在更相信的说明一下 一.Confirm机制 Confirm就是消息确认,当Producer发送消息,如果Broker收到 ...

  5. ThinkPHP---thinkphp模型(M)拓展

    (1)创建数据对象 数据对象就是父类模型中的$this->data,AR模式的底层数据操作用到了数据对象.模型实例化之前数据对象只是空数组,后来使用了魔术方法__set设置了数据对象的值. 上述 ...

  6. python安装外部模块Django

    Windows安装Django模块: 由于本人安装的Python版本是Python3.7,所以安装命令为:pip3 install django /pip3 install django安装过程中出现 ...

  7. 编译器:gcc, clang, llvm

    clang Clang是LLVM的前端,可以用来编译C,C++,ObjectiveC等语言.传统的编译器通常分为三个部分,前端(frontEnd),优化器(Optimizer)和后端(backEnd) ...

  8. xmpp 消息和好友上下线(3)

    原始地址:XMPPFrameWork IOS 开发(四) 消息 //收到消息 - (void)xmppStream:(XMPPStream *)sender didReceiveMessage:(XM ...

  9. js实现汉字中文排序的方法 例如:省市列表的排序

    localeCompare() 1.数组内的元素是中文字符串的简单排序 var arr = ['南京', '北京', '上海', '杭州', '深圳']; function sortChinese ( ...

  10. Xmind的使用

    Xmind是用来学习整理思维的工具