【动态规划】最长上升子序列(LIS)
今天看了《挑战程序设计竞赛》的动态规划部分,感觉对以前一些知其然却不知其所以然的问题有了更好的理解,先整理一部分。
题意:
有一个长为n的数列a0,a1,a2,...,an 。请求出这个序列中最长的上升子序列的长度。上升子序列指的是对于任意的i<j都满足ai<aj的子序列。
分析:
设dp[i]为第i个下标之前的子串中最长上升子序列长度。得到递推关系式,时间复杂度O(n2)。
dp[i] = max(dp[i], dp[j] + 1) (a[i] > a[j])
代码:
#include<iostream>
using namespace std;
int a[105], dp[105];
int main (void)
{
int n, ans = 0; cin>>n;
for (int i = 0; i < n; i++) cin>>a[i];
fill(dp, dp + n, 1);
for (int i = 0; i < n; i++){
for (int j = 0; j < i; j++){
if(a[i]>a[j])
dp[i] = max (dp[i], dp[j] + 1);
}
ans = max (dp[i], ans);
}
cout<<ans<<endl;
return 0;
}
分析:
还可以定义dp[i]为长度为i的上升子序列中末尾元素的最小值,对于长度相同的子序列,末尾元素越小,最终获得的上升子序列越可能长。从序列头开始对每个元素a[j]考虑上升子序列长度为0...i的情况,得到递推关系式,时间复杂度O(n2)。
dp[i] = min(dp[i], a[j]) (a[j]>dp[i-1]||i==1)
代码:
#include<iostream>
using namespace std;
const int INF=0x3fffffff;
int a[105], dp[105];
int main (void)
{
int n, ans = 0; cin>>n;
for (int i = 0; i < n; i++) cin>>a[i];
fill(dp + 1, dp + n + 1, INF);
dp[0] = a[0];
for(int j = 0; j < n; j++){
for(int i = 1; i <= n; i++){
if(i == 1||a[j] > dp[i-1])
dp[i] = min(dp[i], a[j]);
}
}
for(int i = n; i >= 1; i--){
if(dp[i] != INF){
cout<<i<<endl;
break;
}
}
return 0;
}
分析:
上述方法中dp数组除INF外单调递增,所以对于每个元素,最多只更新一次dp数组, 而对于这次更新的位置,不必挨个遍历,可以直接二分查找下界,将复杂度降到O(logn)。
代码:
#include<iostream>
using namespace std;
const int INF=0x3fffffff;
int a[105], dp[105];
int _binary_search(int l, int r, int num)
{
while(l < r){ //区间[l,r)
int mid = l + (r - l)/2;
if(dp[mid] >= num) r = mid;
else l = mid + 1;
}
return l;
}//获取下界
int main (void)
{
int n, ans = 0; cin>>n;
for (int i = 0; i < n; i++) cin>>a[i];
fill(dp + 1, dp + n + 1, INF);
for(int j= 1; j <= n; j++){
int pos = _binary_search(1, n+1, a[j]);
dp[pos] = a[j];
}
for(int i = n; i >= 1; i--){
if(dp[i] != INF){
cout<<i<<endl;
break;
}
}
return 0;
}
分析:
可以直接使用STL中的lower_bound获取下界。通过dp数组中INF的下界获取上升子序列长度。为方便表示可直接定义dp[i]为长度为i+1的上升子序列中末尾元素的最小值。有关 lower_bound 之前写过些简单介绍。
代码:
#include<iostream>
using namespace std;
const int INF=0x3fffffff;
int a[105], dp[105];
int main (void)
{
int n, ans = 0; cin>>n;
fill(dp, dp + n, INF);
for (int i = 0; i < n; i++){
cin>>a[i];
*lower_bound(dp, dp + n, a[i]) = a[i];
}
cout<<lower_bound(dp, dp +n, INF) - dp<<endl;
return 0;
}
【动态规划】最长上升子序列(LIS)的更多相关文章
- 动态规划——最长上升子序列LIS及模板
LIS定义 一个数的序列bi,当b1 < b2 < … < bS的时候,我们称这个序列是上升的.对于给定的一个序列(a1, a2, …, aN),我们可以得到一些上升的子序列(ai1 ...
- 算法之动态规划(最长递增子序列——LIS)
最长递增子序列是动态规划中最经典的问题之一,我们从讨论这个问题开始,循序渐进的了解动态规划的相关知识要点. 在一个已知的序列 {a1, a 2,...an}中,取出若干数组成新的序列{ai1, ai ...
- 动态规划 - 最长递增子序列(LIS)
最长递增子序列是动态规划中经典的问题,详细如下: 在一个已知的序列{a1,a2,...,an}中,取出若干数组组成新的序列{ai1,ai2,...,aim},其中下标i1,i2,...,im保持递增, ...
- 动态规划-最长上升子序列(LIS)
时间复杂度为〇(nlogn)的算法,下面就来看看. 我们再举一个例子:有以下序列A[]=3 1 2 6 4 5 10 7,求LIS长度. 我们定义一个B[i]来储存可能的排序序列,len为LIS长度. ...
- 动态规划--最长上升子序列(LIS)的长度
l例如:对于[3,1,4,2,5],最长上升子序列的长度是3 arr = [3,1,4,5,9,2,6,5,0] def lis(arr): #dp[i]表示第i个位置的值为尾的数组的最长递增子序列的 ...
- 动态规划(DP),最长递增子序列(LIS)
题目链接:http://poj.org/problem?id=2533 解题报告: 状态转移方程: dp[i]表示以a[i]为结尾的LIS长度 状态转移方程: dp[0]=1; dp[i]=max(d ...
- nlog(n)解动态规划--最长上升子序列(Longest increasing subsequence)
最长上升子序列LIS问题属于动态规划的初级问题,用纯动态规划的方法来求解的时间复杂度是O(n^2).但是如果加上二叉搜索的方法,那么时间复杂度可以降到nlog(n). 具体分析参考:http://b ...
- 2.16 最长递增子序列 LIS
[本文链接] http://www.cnblogs.com/hellogiser/p/dp-of-LIS.html [分析] 思路一:设序列为A,对序列进行排序后得到B,那么A的最长递增子序列LIS就 ...
- 最长回文子序列LCS,最长递增子序列LIS及相互联系
最长公共子序列LCS Lintcode 77. 最长公共子序列 LCS问题是求两个字符串的最长公共子序列 \[ dp[i][j] = \left\{\begin{matrix} & max(d ...
- 最长上升子序列LIS(51nod1134)
1134 最长递增子序列 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递 ...
随机推荐
- CSS3 按钮特效(一)
1. 实例 2.HTML 代码 <!DOCTYPE html> <html lang="en"> <head> <meta charset ...
- Objective -C Categories
Objective -C Categories The dynamic runtime dispatch mechanism employed by Objective-C lets you add ...
- 从0开始搭建SQL Server 2012 AlwaysOn 第三篇(安装数据,配置AlwaysOn)
这一篇是从0开始搭建SQL Server 2012 AlwaysOn 的第三篇,这一篇才真正开始搭建AlwaysOn,前两篇是为搭建AlwaysOn 做准备的 操作步骤: 1.安装SQL server ...
- 查看MySQL默认字符集
MySQL默认字符集相信大家都有所了解,下面就为您介绍一下查看MySQL默认字符集的命令,希望对您学习MySQL默认字符集能有些帮助. MySQL的字符集支持(Character Set Suppor ...
- ubuntu 12.04 配置iscsi共享及挂载iscsi共享
一.配置ubuntu 下iscsi下的target 1.配置iscsi-target: sudo apt-get install iscsi* 2.配置一个简单的iscsi target: iscsi ...
- .net+EF+mvc通过EasyUI的DataGrid实现增删改查
@{ Layout = null;} <!DOCTYPE html> <html><head> <meta name="viewport ...
- No-4.变量的基本使用
变量的基本使用 程序就是用来处理数据的,而变量就是用来存储数据的 目标 变量定义 变量的类型 变量的命名 01. 变量定义 在 Python 中,每个变量 在使用前都必须赋值,变量 赋值以后 该变量 ...
- [转载]在网页中插入media,RealPlayer等控件
[转载]在网页中插入media,RealPlayer等控件 (2012-11-02 20:27:43) 转载▼ 标签: 转载 原文地址:在网页中插入media,RealPlayer等控件作者:Mo ...
- js中间件
js中间件 当我们在编写业务代码时候,我们无法避免有些业务逻辑复杂而导致业务代码写得又长又乱,如果再加上时间紧凑情况下写出来的代码估计会更让人抓狂.以至于我们一直在寻求更好的架构设计和更好的代码设计, ...
- Python入门之类(class)
面向对象三大特性 面向对象的三大特性是指:封装.继承和多态. 一.封装 封装,顾名思义就是将内容封装到某个地方,以后再去调用被封装在某处的内容. 所以,在使用面向对象的封装特性时,需要: 将内容封装到 ...