最小生成树Prim算法 Kruskal算法
Prim算法(贪心策略)N^2
选定图中任意定点v0,从v0开始生成最小生成树
树中节点Va,树外节点Vb
最开始选一个点为Va,其余Vb,
之后不断加Vb到Va最短距离的点
1.初始化d[v0]=0,其他d[i]=正无穷。d表示Vb电到i的最小距离
2.经过n次如下步骤,得到一颗喊n节点n-1边的最小生成树
(1)选择一个未标记的k,并且d[k]的值最小
(2)标记点k进入树Va
(3)以k为中间点,修改未标记的点j,即Vb中的点到Va的距离值;
3.得到最小生成树t
#include<iostream>
#include<iomanip>
#include<cstring>
using namespace std;
const int INF=0x7fffffff/;
int vst[];//标记i是否加入最小生成树Va中
int d[];//i与当前生成树中的点有连边的边长最小值
int g[][],n,m,ans=;//g存边和权值
void read(){//读入数据
int i,j,x,y,w;
cin>>n>>m;//n点m边
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
g[i][j]=INF;//清零
for(i=;i<=m;i++){
cin>>x>>y>>w;
g[x][y]=g[y][x]=w;//记录边和权值
}
}
void prim(int v0){
int i,j,k,minn;
memset(vst,,sizeof(vst));
for(i=;i<=n;i++) d[i]=INF;//初始化
d[v0]=;//最初节点
ans=;
for(i=;i<=n;i++){//选择n个点
minn=INF;
for(j=;j<=n;j++)//选择最小边 ,Vb到Va
if(vst[j]==&&minn>d[j]){
minn=d[j];k=j;
}
vst[k]=;//标记 ,加入到Va
ans+=d[k];//加上边的权值
for(j=;j<=n;j++)//修改d数组
if(vst[j]==&&d[j]>g[k][j])
d[j]=g[k][j];
}
}
int main(){
read();
prim();
cout<<ans<<endl;
return ;
}
Kruskal算法(贪心策略)nlogn
算法步骤:
1.将G中的带权边由小到大排序
2.按照权值由小到大依次选边。诺形成环就放弃这一条,否则标记当前边并计数;
3.重复2.直到生成树有n-1条边。
否则遍历完边取不到n-1,就不存在最小生成树。
***如何判断环:用并查集:判断新加入的边的两个端点如果在并查集同一集合则成环;
否则保存当前边,并合并涉及的两个集合。
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=;
struct edge{
int x,y,z;
}a[maxn];
int n,m,prt[maxn],ans=,bj;
bool cmp(const edge &x,const edge &y){
return x.z<y.z;
}
int getfather(int x){//找祖先
if(prt[x]==x) return x;
prt[x]=getfather(prt[x]);
return prt[x];
}
void kruskal(){//核心程序
int f1,f2,k,i;
k=;//记录已经加入的边数
for(i=;i<=n;i++) prt[i]=i;//初始化
for(i=;i<=m;i++){
f1=getfather(a[i].x);//并查集??不太懂
f2=getfather(a[i].y);
if(f1!=f2){
ans+=a[i].z;
prt[f1]=f2;//合并不相同的两个集合
k++;
if(k==n-) break;
}
}
if(k<n-){
cout<<"Impossible"<<endl;bj=;
return ;
}
}
int main(){
cin>>n>>m;
ans=;bj=;
for(int i=;i<=m;i++)
cin>>a[i].x>>a[i].y>>a[i].z;
sort(a+,a+m+,cmp);
kruskal();
if(bj) cout<<ans<<endl;
return ;
}
最小生成树Prim算法 Kruskal算法的更多相关文章
- 无向带权图的最小生成树算法——Prim及Kruskal算法思路
边赋以权值的图称为网或带权图,带权图的生成树也是带权的,生成树T各边的权值总和称为该树的权. 最小生成树(MST):权值最小的生成树. 生成树和最小生成树的应用:要连通n个城市需要n-1条边线路.可以 ...
- [数据结构]最小生成树算法Prim和Kruskal算法
最小生成树 在含有n个顶点的连通图中选择n-1条边,构成一棵极小连通子图,并使该连通子图中n-1条边上权值之和达到最小,则称其为连通网的最小生成树. 例如,对于如上图G4所示的连通网可以有多棵权值总 ...
- 图的最小生成树的理解和实现:Prim和Kruskal算法
最小生成树 一个连通图的生成树是一个极小的连通子图,它含有图中所有的顶点,但只有足以构成一棵树的n-1条边.我们将构造连通网的最小代价生成树称为最小生成树(Minimum Cost Spanning ...
- 最小生成树(Prim算法+Kruskal算法)
什么是最小生成树(MST)? 给定一个带权的无向连通图,选取一棵生成树(原图的极小连通子图),使生成树上所有边上权的总和为最小,称为该图的最小生成树. 求解最小生成树的算法一般有这两种:Prim算法和 ...
- hdu 1233 还是畅通工程 最小生成树(prim算法 + kruskal算法)
还是畅通工程 Time Limit: 4000/2 ...
- 最小生成树 Prim算法 Kruskal算法实现
最小生成树定义 最小生成树是一副连通加权无向图中一棵权值最小的生成树. 在一给定的无向图 G = (V, E) 中,(u, v) 代表连接顶点 u 与顶点 v 的边(即,而 w(u, v) 代表此边的 ...
- 算法(图论)——最小生成树及其题目应用(prim和Kruskal算法实现)
题目 n个村庄间架设通信线路,每个村庄间的距离不同,如何架设最节省开销? Kruskal算法 特点 适用于稀疏图,时间复杂度 是nlogn的. 核心思想 从小到大选取不会产生环的边. 代码实现 代码中 ...
- 【431】Prim 算法 & Kruskal 算法
Prim 算法: Minimum Spanning Tree(MST):最小生成树,就是连接所有节点的最小权值 mst集合与rest集合 mst集合中顶点,找到一条最小权值的边 然后把边相关的顶点,选 ...
- 最小生成树之算法记录【prime算法+Kruskal算法】【模板】
首先说一下什么是树: 1.只含一个根节点 2.任意两个节点之间只能有一条或者没有线相连 3.任意两个节点之间都可以通过别的节点间接相连 4.除了根节点没一个节点都只有唯一的一个父节点 5.也有可能是空 ...
随机推荐
- 一步一步学Silverlight 2系列(1):创建一个基本的Silverlight应用
概述 Silverlight 2 Beta 1版本发布了,无论从Runtime还是Tools都给我们带来了很多的惊喜,如支持框架语言Visual Basic, Visual C#, IronRuby, ...
- mac idea 内存
vim /Applications/IntelliJ\ IDEA.app/Contents/bin/idea.vmoptions -Xms512m -Xmx2048m -XX:ReservedCode ...
- idea output 悬浮浮动问题
参考:https://www.cnblogs.com/thinkingandworkinghard/p/6306800.html 点这个就ok
- BZOJ_1532_[POI2005]Kos-Dicing_二分+网络流
BZOJ_1532_[POI2005]Kos-Dicing_二分+网络流 Description Dicing 是一个两人玩的游戏,这个游戏在Byteotia非常流行. 甚至人们专门成立了这个游戏的一 ...
- 使用cgroups限制MongoDB的内存使用
cgroups,其名称源自控制组群(control groups)的简写,是Linux内核的一个功能,用来限制,控制与分离一个进程组群的资源(如CPU.内存.磁盘输入输出等). 这个项目最早是由Goo ...
- 从0开始学习Hadoop(1) 环境准备 Win7环境+VirtureBox+Ubuntu
虚拟机:VirtureBox 3.18 下载地址: https://www.virtualbox.org/ 操作系统:Ubuntu 版本:ubuntu-15.04-desktop-amd64.iso ...
- Ubuntu midi 播放
One of the simplest methods to play a midi file in Ubuntu is to install timidity. sudo apt-get insta ...
- openStack 镜像制作,镜像裁剪一般步骤
镜像制作一般裁剪步骤 1, linux系统安装CentOs/RHEL Desktop桌面系统,分区划分但分区/挂载点.设置Selinux=disabled关闭iptables安装cloud-init[ ...
- 05_传智播客iOS视频教程_第一个OC程序
Cocoa Application开发的是带界面的程序. OC是完全兼容C语言的,但是C语言里面是不能写OC的东西的. OC和C的第一个区别,就是源文件的后缀名的区别.OC程序的源文件的后缀名是.m, ...
- Entity Framework 学习整理
MSDN: http://msdn.microsoft.com/en-us/data/aa937723 台湾博客: http://www.dotblogs.com.tw/yc421206/ http: ...