HDU1300 Pearls —— 斜率优化DP
题目链接:https://vjudge.net/problem/HDU-1300
Pearls
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 2920 Accepted Submission(s): 1464
Every month the stock manager of The Royal Pearl prepares a list with the number of pearls needed in each quality class. The pearls are bought on the local pearl market. Each quality class has its own price per pearl, but for every complete deal in a certain quality class one has to pay an extra amount of money equal to ten pearls in that class. This is to prevent tourists from buying just one pearl.
Also The Royal Pearl is suffering from the slow-down of the global economy. Therefore the company needs to be more efficient. The CFO (chief financial officer) has discovered that he can sometimes save money by buying pearls in a higher quality class than is actually needed. No customer will blame The Royal Pearl for putting better pearls in the bracelets, as long as the prices remain the same.
For example 5 pearls are needed in the 10 Euro category and 100 pearls are needed in the 20 Euro category. That will normally cost: (5+10)*10 + (100+10)*20 = 2350 Euro.
Buying all 105 pearls in the 20 Euro category only costs: (5+100+10)*20 = 2300 Euro.
The problem is that it requires a lot of computing work before the CFO knows how many pearls can best be bought in a higher quality class. You are asked to help The Royal Pearl with a computer program.
Given a list with the number of pearls and the price per pearl in different quality classes, give the lowest possible price needed to buy everything on the list. Pearls can be bought in the requested, or in a higher quality class, but not in a lower one.
2
100 1
100 2
3
1 10
1 11
100 12
1344
题意:
进销珍珠。有n种珍珠,每种珍珠都有其需求量和价格。但是供货商要求,每一种珍珠(不管数量多少)都要附加购买10个这种类型的珍珠,或者一种较便宜的珍珠当成是较贵的珍珠,售价也如较贵的珍珠,这样就可以省去购买10个较便宜的珍珠。问:怎样购买才能以最低的花费完成进货任务。
题解:
1.首先可以得到一个结论:如果一种较便宜的珍珠要归到较贵的珍珠,那么这个较贵的珍珠必须选为刚好比较便宜珍珠贵一点点的(贪心的策略,既然都要归到较贵的了,那肯定要最便宜的那种。)
2.把珍珠依照价格排序之后,其实就是一个区间的划分。可以直接O(n^2)枚举DP,也可以通过斜率进行优化:
O(n^2):
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int mod = 1e9+;
const int MAXM = 1e5+;
const int MAXN = 1e3+; int val[MAXN], sum[MAXN], dp[MAXN]; int main()
{
int T, n;
scanf("%d", &T);
while(T--)
{
scanf("%d", &n);
sum[] = ;
for(int i = ; i<=n; i++)
scanf("%d%d", &sum[i],&val[i]), sum[i] += sum[i-]; dp[] = ;
for(int i = ; i<=n; i++)
{
dp[i] = (sum[i]+)*val[i];
for(int j = ; j<=i-; j++)
dp[i] = min(dp[i], dp[j]+(sum[i]-sum[j]+)*val[i]);
}
printf("%d\n", dp[n]);
}
}
斜率优化:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int mod = 1e9+;
const int MAXM = 1e5+;
const int MAXN = 1e3+; int val[MAXN], sum[MAXN], dp[MAXN];
int q[MAXN], head, tail; int getUp(int i, int j)
{
return dp[i] - dp[j];
} int getDown(int i, int j)
{
return sum[i] - sum[j];
} int getDp(int i, int j)
{
return dp[j] + (sum[i]-sum[j]+)*val[i];
} int main()
{
int T, n;
scanf("%d", &T);
while(T--)
{
scanf("%d", &n);
sum[] = ;
for(int i = ; i<=n; i++)
scanf("%d%d", &sum[i],&val[i]), sum[i] += sum[i-]; dp[] = ;
head = tail = ;
q[tail++] = ;
for(int i = ; i<=n; i++)
{
while(head+<tail && getUp(q[head+],q[head])<=getDown(q[head+],q[head])*val[i]) head++;
dp[i] = getDp(i, q[head]);
while(head+<tail && getUp(i, q[tail-])*getDown(q[tail-],q[tail-])<=
getUp(q[tail-],q[tail-])*getDown(i, q[tail-])) tail--;
q[tail++] = i;
}
printf("%d\n", dp[n]);
}
}
HDU1300 Pearls —— 斜率优化DP的更多相关文章
- poj 1260 Pearls 斜率优化dp
这个题目数据量很小,但是满足斜率优化的条件,可以用斜率优化dp来做. 要注意的地方,0也是一个决策点. #include <iostream> #include <cstdio> ...
- HDOJ 1300 Pearls 斜率优化dp
原题连接:http://acm.hdu.edu.cn/showproblem.php?pid=1300 题意: 题目太长了..自己看吧 题解: 看懂题目,就会发现这是个傻逼dp题,斜率优化一下就好 代 ...
- 【转】斜率优化DP和四边形不等式优化DP整理
(自己的理解:首先考虑单调队列,不行时考虑斜率,再不行就考虑不等式什么的东西) 当dp的状态转移方程dp[i]的状态i需要从前面(0~i-1)个状态找出最优子决策做转移时 我们常常需要双重循环 (一重 ...
- bzoj-4518 4518: [Sdoi2016]征途(斜率优化dp)
题目链接: 4518: [Sdoi2016]征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地 ...
- bzoj-1096 1096: [ZJOI2007]仓库建设(斜率优化dp)
题目链接: 1096: [ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L ...
- [BZOJ3156]防御准备(斜率优化DP)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3156 分析: 简单的斜率优化DP
- 【BZOJ-1096】仓库建设 斜率优化DP
1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3719 Solved: 1633[Submit][Stat ...
- BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP
1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...
- BZOJ 3156: 防御准备 斜率优化DP
3156: 防御准备 Description Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小的战 ...
随机推荐
- response.sendRedirect()使用注意事项
用response.sendRedirect做转向其实是向浏览器发送一个特殊的Header,然后由浏览器来做转向,转到指定的页面,所以用sendRedirect时,浏览器的地址栏上可以看到地址的变化. ...
- vue之二级路由
router-view : <router-view> 组件是一个 functional 组件,渲染路径匹配到的视图组件 一 样式 1 在一个vue组件,<template>& ...
- 等价表达式(codevs 1107 答案错误)
题目描述 Description 明明进了中学之后,学到了代数表达式.有一天,他碰到一个很麻烦的选择题.这个题目的题干中首先给出了一个代数表达式,然后列出了若干选项,每个选项也是一个代数表达式,题目的 ...
- Mac快速查看隐藏文件
使用终端 显示隐藏文件的最简单方法是使用终端.只要打开终端(位于应用程序--实用工具),将以下代码复制进去然后回车 defaults write com.apple.finder AppleShowA ...
- Mybatis resultMap空值映射问题
参考博客:https://www.oschina.net/question/1032714_224673 http://stackoverflow.com/questions/22852383/how ...
- Angular Material & Hello World
前言 Angular Material(下称Material)的组件样式至少是可以满足一般的个人开发需求(我真是毫无设计天赋),也是Angular官方推荐的组件.我们通过用这个UI库来快速实现自己的i ...
- codevs——2651 孔子教学——同桌
2651 孔子教学——同桌 时间限制: 1 s 空间限制: 8000 KB 题目等级 : 黄金 Gold 题解 题目描述 Description 孔子是我国古代著名的教育家.他有先见 ...
- Bestcoder Tom and matrix
问题描述 Tom放学回家的路上,看到天空中出现一个矩阵.Tom发现,如果矩阵的行.列从0开始标号,第i行第j列的数记为ai,j,那么ai,j=Cji 如果i < j,那么ai,j=0 Tom突发 ...
- Mybatis详解
SqlSession(SqlSessionDaoSupport类) SqlSessionDaoSupportSqlSessionDaoSupport是一个抽象的支持类,用来为你提供SqlSession ...
- OHIFViewer meteor build 问题
D:\Viewers-master\OHIFViewer>meteor build --directory d:/h2zViewerC:\Users\h2z\AppData\Local\.met ...