BZOJ 4823 [Cqoi2017]老C的方块 ——网络流
lrd的题解:http://www.cnblogs.com/liu-runda/p/6695139.html
我还是太菜了。以后遇到这种题目应该分析分析性质的。
网络流复杂度真是$O(玄学)$
#include <map>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define inf 0x3f3f3f3f
#define ll long long
#define mp make_pair
#define maxn 500005 int mov[4][2]={{0,1},{1,0},{0,-1},{-1,0}};
int h[maxn],to[maxn],ne[maxn],fl[maxn],en=0,n,m,k;
int S=maxn-2,T=maxn-1,dis[maxn];
queue <int> q;
map <pair<int,int>,int> Link; void add(int a,int b,int c)
{
to[en]=b;ne[en]=h[a];fl[en]=c;h[a]=en++;
to[en]=a;ne[en]=h[b];fl[en]=0;h[b]=en++;
} bool tell()
{
memset(dis,-1,sizeof dis); dis[S]=0; q.push(S);
while (!q.empty())
{
int x=q.front(); q.pop();
for (int i=h[x];i>=0;i=ne[i])
if (dis[to[i]]==-1&&fl[i]>0){
dis[to[i]]=dis[x]+1;
q.push(to[i]);
}
}
return dis[T]!=-1;
} int zeng(int k,int now)
{
if (k==T) return now;
int ret=0;
for (int i=h[k];i>=0&&ret<now;i=ne[i])
if (dis[to[i]]==dis[k]+1&&fl[i]>0)
{
int tmp=zeng(to[i],min(fl[i],now-ret));
fl[i]-=tmp;fl[i^1]+=tmp;ret+=tmp;
}
if (!ret) dis[k]=-1;
return ret;
} int dinic()
{
int ret=0,tmp;
while (tell()) while (tmp=zeng(S,inf)) ret+=tmp;
return ret;
} int x[maxn],y[maxn],w[maxn]; bool isgreen(int x,int y)
{
int tmp=(x>>1)&1;
if (tmp) return ((x+y)&1);
else return (!((x+y)&1));
} bool isblue(int x,int y)
{if ((!isgreen(x,y))&&(!((x>>1)&1))) return true;return false;} bool isred(int x,int y)
{if ((!isgreen(x,y))&&(!isblue(x,y))) return true;return false;} bool leftgreen(int x,int y)
{return (isgreen(x,y))&&(isred(x,y+1))&&(isgreen(x+1,y));} bool rightgreen(int x,int y)
{return (isgreen(x,y))&&(isred(x,y+1))&&(isgreen(x-1,y));} void Finout()
{
freopen("block.in","r",stdin);
freopen("block.out","w",stdout);
} int main()
{
memset(h,-1,sizeof h);
int n,m,k;
scanf("%d%d%d",&n,&m,&k);
F(i,1,k)
{
scanf("%d%d%d",&x[i],&y[i],&w[i]);
if (isred(x[i],y[i])) add(S,i,w[i]);
else if (isblue(x[i],y[i])) add(i,T,w[i]);
Link[mp(x[i],y[i])]=i;
}
F(i,1,k)
{
if (isblue(x[i],y[i]))
{
F(k,0,3)
{
int tx=x[i]+mov[k][0],tmp,ty=y[i]+mov[k][1];
if (tx>=1&&tx<=n&&ty>=1&&ty<=m&&isgreen(tx,ty)&&(tmp=Link[mp(tx,ty)]))
add(tmp,i,inf);
}
}
else if (isred(x[i],y[i]))
{
F(k,0,3)
{
int tx=x[i]+mov[k][0],tmp,ty=y[i]+mov[k][1];
if (tx>=1&&tx<=n&&ty>=1&&ty<=m&&isgreen(tx,ty)&&(tmp=Link[mp(tx,ty)]))
add(i,tmp,inf);
}
}
else if (leftgreen(x[i],y[i]))
{
int tmp;
if ((tmp=Link[mp(x[i]+1,y[i])]))
add(i,Link[mp(x[i]+1,y[i])],min(w[i],w[tmp]));
}
else if (rightgreen(x[i],y[i]))
{
int tmp;
if ((tmp=Link[mp(x[i]-1,y[i])]))
add(i,Link[mp(x[i]-1,y[i])],min(w[i],w[tmp]));
}
}
printf("%d\n",dinic());
}
BZOJ 4823 [Cqoi2017]老C的方块 ——网络流的更多相关文章
- bzoj 4823 [Cqoi2017]老C的方块——网络流
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4823 一个不合法方案其实就是蓝线的两边格子一定选.剩下两部分四相邻格子里各选一个. 所以这个 ...
- bzoj 4823: [Cqoi2017]老C的方块 [最小割]
4823: [Cqoi2017]老C的方块 题意: 鬼畜方块游戏不解释... 有些特殊边,有些四个方块组成的图形,方块有代价,删掉一些方块使得没有图形,最小化代价. 比较明显的最小割,一个图形中必须删 ...
- BZOJ 4823: [Cqoi2017]老C的方块
分析: 我觉得我的网络流白学了...QAQ... 其实数据范围本是无法用网络流跑过去的,然而出题者想让他跑过去,也就跑过去了... 看到题目其实感觉很麻烦,不知道从哪里入手,那么仔细观察所给出的有用信 ...
- bzoj 4823: [Cqoi2017]老C的方块【最大权闭合子图】
参考:https://www.cnblogs.com/neighthorn/p/6705785.html 并不是黑白染色而是三色染色(还有四色的,不过是一个意思 仔细观察一下不合法情况,可以发现都是特 ...
- BZOJ 4823 Luogu P3756 [CQOI2017]老C的方块 (网络流、最小割)
题目链接 (Luogu) https://www.luogu.org/problem/P3756 (BZOJ) http://lydsy.com/JudgeOnline/problem.php?id= ...
- [CQOI2017]老C的方块 网络流
---题面--- 题解: 做这题做了好久,,,换了4种建图QAQ 首先我们观察弃疗的形状,可以发现有一个特点,那就是都以一个固定不变的特殊边为中心的,如果我们将特殊边两边的方块分别称为s块和t块, 那 ...
- 洛谷$P3756\ [CQOI2017]$老$C$的方块 网络流
正解:网络流 解题报告: 传送门$QwQ$ 看到不能出现给定的讨厌的图形,简单来说就,特殊边两侧的方格不能同时再连方格. 所以如果出现,就相当于是四种方案?就分别炸四个格子. 然后冷静分析一波之后发现 ...
- bzoj4823: [Cqoi2017]老C的方块(最小割)
4823: [Cqoi2017]老C的方块 题目:传送门 题解: 毒瘤题ORZ.... 太菜了看出来是最小割啥边都不会建...狂%大佬强强强 黑白染色?不!是四个色一起染,四层图跑最小割... 很 ...
- 【BZOJ4823】[CQOI2017]老C的方块(网络流)
[BZOJ4823][CQOI2017]老C的方块(网络流) 题面 BZOJ 题解 首先还是给棋盘进行黑白染色,然后对于特殊边左右两侧的格子单独拎出来考虑. 为了和其他格子区分,我们把两侧的这两个格子 ...
随机推荐
- Permutations(copy)
Given a collection of numbers, return all possible permutations. For example, [1,2,3] have the follo ...
- ios 自定义加载动画效果
在开发过程中,可能会遇到各种不同的场景需要等待加载成功后才能显示数据.以下是自定义的一个动画加载view效果. 在UIViewController的中加载等到效果,如下 - (void)vi ...
- Java文件操作系列[2]——使用JXL操作Excel文件
由于java流无法实现对Excel文件的读写操作,因此在项目中经常利用第三方开源的组件来实现.支持Excel文件操作的第三方开源组件主要有Apache的POI和开源社区的JXL. 总体来说,二者的区别 ...
- React学习实例总结,包含yeoman安装、webpack构建
1.安装yeoman 在安装nodeJs的基础上,输入命令:npm install -g yo grunt-cli bower,安装yeoman,grunt,bowerify 安装完成后,输入命令:y ...
- Solr笔记(2)_Schema.xml和solrconfig.xml分析
现在我们开始研究载入的数据部分(importing data) 在正式开始前,我们先介绍一个存储了大量音乐媒体的网站http://musicbrainz.org , 这里的数据都是免费的,一个大型开放 ...
- Spring中的事务传播行为与隔离级别
事务传播行为 事务传播行为(为了解决业务层方法之间互相调用的事务问题): 当事务方法被另一个事务方法调用时,必须指定事务应该如何传播.例如:方法可能继续在现有事务中运行,也可能开启一个新事务,并在自己 ...
- Django auth权限
创建超级管理员命令 python manage.py createsuperuser --username hello 检查和校验用户 from django.contrib import auth ...
- history 路由且带二级目录的Apache配置
有多个项目目录的时候 由于项目不知一个,所以不得不为每一个项目建一个专有的文件夹,这就导致了在配置nginx的时候会出现二级目录 - step1: 修改 vue.config.js 添加配置 ...
- 阿里短信接口使用(JAVA版)
近期项目需要使用短信接口,对比下选择了阿里的短信接口 以下为开发笔记: maven pom.xml中引入: <dependency> <groupId>com.aliyun&l ...
- ios设备屏幕尺寸与分辨率
iOS 设备的屏幕尺寸.分辨率及其屏幕边长比例详细情况是怎样的? 根据屏幕尺寸和分辨率,ios现在数起来有6个版本.一,3GS:二,4s为代表:三,iphone5:四,ipad2为代表:五,ipad4 ...