题目链接:局部极小值

  这是一道\(dp\)好题。

  由于需要保证某些位置比周围都要小,那么我们可以从小到大把每个数依次填入,保证每个局部极小值填入之前周围都不能填,就只需要在加入的时候计数了。

  由于局部极小值最多只可能出现\(8\)个,所以我们可以直接状压当前所有局部极小值位置的状态。\(f_{i,S}\)表示当前填完了\(i\)个数,局部极小值状态为\(S\)的方案数。同时我们还需要一个\(cnt\)数组,\(cnt_S\)表示当局部极小值状态为\(S\)时有多少个位置不能填。

  这样转移方程就很显然了。可以从\(f_{i,S}\)转到\(f_{i+1,S}\),方案数为\(nm-i-cnt[S]\);或者直接在某个局部极小值位置上填一个数。

  但是这样会有问题,可能会导致某些非局部极小值的位置成为局部极小值。于是我们就可以枚举每个非局部极小值的位置是否是局部极小值,然后容斥掉即可。这样枚举的方案数看似很多,实际上最坏是不到\(2\times 10^4\)的。注意需要处理矩阵不合法的情况。

  下面贴代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
#define mod 12345678 using namespace std;
typedef long long llg; int zx[8]={-1,0,1,1,1,0,-1,-1};
int zy[8]={1,1,1,0,-1,-1,-1,0};
int n,m,cnt[1<<8],tol,fr[1<<8];
int f[29][1<<8],op[1<<8],ans;
int ci[5][8],ax[8],ay[8],la;
char s[5][8]; void work(int x,int y,int S,int z){
for(int k=0,i,j;k<8;k++){
i=x+zx[k],j=y+zy[k];
if(i>0 && i<=n && j>0 && j<=m){
if(!ci[i][j]) cnt[S]++;
ci[i][j]+=z;
}
}
} void dp(){
int now=1<<la;
for(int S=0;S<now;S++){
cnt[S]=fr[S];
for(int x=S,j;j=x&(-x),x;x-=j)
work(ax[op[j]+1],ay[op[j]+1],S,1);
for(int x=S,j;j=x&(-x),x;x-=j)
work(ax[op[j]+1],ay[op[j]+1],S,-1);
}
for(int i=0;i<=n*m;i++)
for(int S=0;S<now;S++) f[i][S]=0;
f[0][now-1]=1;
for(int i=0;i<n*m;i++){
for(int S=0,x;S<now;S++){
(f[i+1][S]+=f[i][S]*(n*m-i-cnt[S]))%=mod;
for(x=S;x;x-=x&(-x))
(f[i+1][S^(x&(-x))]+=f[i][S])%=mod;
}
}
if(tol) (ans-=f[n*m][0])%=mod;
else (ans+=f[n*m][0])%=mod;
} void print(){printf("0");exit(0);}
void dfs(int x,int y){
if(y==m+1) x++,y=1;
if(x==n+1){dp();return;}
bool ww=s[x][y]=='.';
for(int k=0;k<8;k++)
if(s[x+zx[k]][y+zy[k]]=='X') ww=0;
if(ww) s[x][y]='X',tol++;
if(s[x][y]=='X'){
la++,ax[la]=x,ay[la]=y;
dfs(x,y+1),la--;
}
if(ww) s[x][y]='.',tol--;
if(s[x][y]=='.') dfs(x,y+1);
} int main(){
File("a");
scanf("%d %d",&n,&m);
for(int i=1;i<=n;i++) scanf("%s",s[i]+1);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++) if(s[i][j]=='X')
for(int k=0;k<8;k++)
if(s[i+zx[k]][j+zy[k]]=='X') print();
for(int i=0;i<(1<<8);i++) fr[i]=fr[i>>1]+(i&1);
for(int i=0;i<8;i++) op[1<<i]=i; dfs(1,1);
printf("%d",(ans+mod)%mod);
return 0;
}

BZOJ 2669 【CQOI2012】 局部极小值的更多相关文章

  1. bzoj 2669 [cqoi2012]局部极小值 DP+容斥

    2669: [cqoi2012]局部极小值 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 838  Solved: 444[Submit][Status ...

  2. BZOJ 2669 CQOI2012 局部极小值 状压dp+容斥原理

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2669 题意概述:实际上原题意很简洁了我就不写了吧.... 二话不说先观察一下性质,首先棋盘 ...

  3. ●BZOJ 2669 [cqoi2012]局部极小值

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2669 题解: 容斥,DP,DFS 先看看 dp 部分:首先呢,X的个数不会超过 8个.个数很 ...

  4. 【BZOJ 2669】 2669: [cqoi2012]局部极小值 (状压DP+容斥原理)

    2669: [cqoi2012]局部极小值 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 667  Solved: 350 Description 有一 ...

  5. bzoj2669[cqoi2012]局部极小值 容斥+状压dp

    2669: [cqoi2012]局部极小值 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 774  Solved: 411[Submit][Status ...

  6. [BZOJ2669] [cqoi2012]局部极小值

    [BZOJ2669] [cqoi2012]局部极小值 Description 有一个n行m列的整数矩阵,其中1到nm之间的每个整数恰好出现一次.如果一个格子比所有相邻格子(相邻是指有公共边或公共顶点) ...

  7. P3160 [CQOI2012]局部极小值

    题目 P3160 [CQOI2012]局部极小值 一眼就是状压,接下来就不知道了\(qwq\) 做法 我们能手玩出局部小值最多差不多是\(8,9\)个的样子,\(dp_{i,j}\)为填满\(1~i\ ...

  8. P3160 [CQOI2012]局部极小值 题解(状压DP+容斥)

    题目链接 P3160 [CQOI2012]局部极小值 双倍经验,双倍快乐 解题思路 存下来每个坑(极小值点)的位置,以这个序号进行状态压缩. 显然,\(4*7\)的数据范围让极小值点在8个以内(以下示 ...

  9. BZOJ 2669 Luogu P3160 [CQOI2012]局部极小值 (容斥原理、DP)

    题目链接 (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=2669 (luogu) https://www.luogu.org/prob ...

随机推荐

  1. [py]约瑟夫问题-循环队列

    约瑟夫问题(历史战争问题) 直观理解 老外视频讲解 模拟器演示 约瑟夫问题 数学姥公众号 讲的最清楚 背景及,推倒过程讲解得很清晰,旨在提高人们对数据的兴趣 简单说下: 几个人围成一圈(循环队列), ...

  2. python——asyncio模块实现协程、异步编程

    我们都知道,现在的服务器开发对于IO调度的优先级控制权已经不再依靠系统,都希望采用协程的方式实现高效的并发任务,如js.lua等在异步协程方面都做的很强大. Python在3.4版本也加入了协程的概念 ...

  3. R实现的最小二乘lsfit函数学习

    1.源码 function (x, y, wt = NULL, intercept = TRUE, tolerance = 1e-, yname = NULL) { x <- as.matrix ...

  4. POJ 1836

    刚开始二分写错了 wa了很久 这个二分 的好好想想 #include <iostream> #include<cstdio> #include<string.h> ...

  5. JavaScript中hoisting(悬置/置顶解析/预解析) 实例解释,全局对象,隐含的全局概念

    JavaScript中hoisting(悬置/置顶解析/预解析) 实例解释,全局对象,隐含的全局概念 <html> <body> <script type="t ...

  6. DBMS_OUTPUT.PUT_LINE()方法的简单介绍

    1.最基本的DBMS_OUTPUT.PUT_LINE()方法. 随便在什么地方,只要是BEGIN和END之间,就可以使用DBMS_OUTPUT.PUT_LINE(output);然而这会有一个问题,就 ...

  7. QAQ的LIS树 QAQ的LIS树2 题解报告

    这两道题实际上考试的时候是一道题OwO 太可怕了,忙了我三个多小时,写了整整7K 这个题两个询问关联性不强,所以分开来考虑 QAQ的LIS树 考虑如何用dp求解答案 设dp(v)表示v到根的修改后的序 ...

  8. ACM题目————Sunscreen

    Description To avoid unsightly burns while tanning, each of the C (1 ≤ C ≤ 2500) cows must cover her ...

  9. OpenCV-跟我一起学数字图像处理之拉普拉斯算子

    https://www.cnblogs.com/german-iris/p/4840647.html Laplace算子和Sobel算子一样,属于空间锐化滤波操作.起本质与前面的Spatial Fil ...

  10. 一个简单的JavaScript实例

    1 <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&q ...