Uniform Generator

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 35023    Accepted Submission(s): 13939

Problem Description

Computer simulations often require random numbers. One way to generate pseudo-random numbers is via a function of the form

seed(x+1) = [seed(x) + STEP] % MOD

where '%' is the modulus operator.

Such a function will generate pseudo-random numbers (seed) between 0 and MOD-1. One problem with functions of this form is that they will always generate the same pattern over and over. In order to minimize this effect, selecting the STEP and MOD values carefully can result in a uniform distribution of all values between (and including) 0 and MOD-1.
For example, if STEP = 3 and MOD = 5, the function will generate the series of pseudo-random numbers 0, 3, 1, 4, 2 in a repeating cycle. In this example, all of the numbers between and including 0 and MOD-1 will be generated every MOD iterations of the function. Note that by the nature of the function to generate the same seed(x+1) every time seed(x) occurs means that if a function will generate all the numbers between 0 and MOD-1, it will generate pseudo-random numbers uniformly with every MOD iterations.
If STEP = 15 and MOD = 20, the function generates the series 0, 15, 10, 5 (or any other repeating series if the initial seed is other than 0). This is a poor selection of STEP and MOD because no initial seed will generate all of the numbers from 0 and MOD-1.
Your program will determine if choices of STEP and MOD will generate a uniform distribution of pseudo-random numbers.

Input

Each line of input will contain a pair of integers for STEP and MOD in that order (1 <= STEP, MOD <= 100000).

Output

For each line of input, your program should print the STEP value right- justified in columns 1 through 10, the MOD value right-justified in columns 11 through 20 and either "Good Choice" or "Bad Choice" left-justified starting in column 25. The "Good Choice" message should be printed when the selection of STEP and MOD will generate all the numbers between and including 0 and MOD-1 when MOD numbers are generated. Otherwise, your program should print the message "Bad Choice". After each output test set, your program should print exactly one blank line.

Sample Input

3 5 15 20 63923 99999

Sample Output

3 5 Good Choice 15 20 Bad Choice 63923 99999 Good Choice

该题可以直接暴力求解,也可以找规律,实际上Good Choice当且仅当STEP和MOD互质,下面给出证明。

分析:数论。随机数生成的数字的第x+1个数字为:

seed(x) = (seed(x-1)+STEP)%MOD = (seed(x-1)%MOD + STEP%MOD)%MOD

= (seed(x-2)%MOD + (STEP*2)%MOD)%MOD

= ... = (seed(0)%MOD + (STEP*x)%MOD)%MOD

如果不能生成全部序列一定存在 0 <= i <j < MOD 使得生成值相同,即:

seed(i) = (seed(0)%MOD + (STEP*i)%MOD)%MOD

seed(j) = (seed(0)%MOD + (STEP*j)%MOD)%MOD

由seed(i) = seed(j) 可以得知 (STEP*(j-i))%MOD = 0 且 i ≠ j,即STEP*(j-i)为MOD的倍数:

STEP*(j-i)=k*MOD  ->  (j-i)*STEP/MOD=k  (k属于Z)

又因为 j-i < MOD 所以STEP和MOD必有一个大于1的公因子,即gcd( STEP,MOD ) > 1。

由此可知,可以生成全部序列的充要条件是 gcd( STEP,MOD ) = 1。

说明:注意输出格式,我在这PE过一次。。仔细看题目原来要求输出每个测试样例后输出一行空白。

下面是AC代码:

#include<cstdio>
using namespace std; int gcd(int a,int b){
return b?gcd(b,a%b):a;
} int main(){
int step,mod;
while(scanf("%d%d",&step,&mod)!=EOF){
int res=gcd(step,mod);
if(res==1)
printf("%10d%10d Good Choice\n\n",step,mod);
else
printf("%10d%10d Bad Choice\n\n",step,mod); }
return 0;
}

hdoj1014 互质的更多相关文章

  1. openjudge7834:分成互质组 解析报告

    7834:分成互质组 总时间限制:  1000ms 内存限制:  65536kB 描述 给定n个正整数,将它们分组,使得每组中任意两个数互质.至少要分成多少个组? 输入 第一行是一个正整数n.1 &l ...

  2. poj3696 快速幂的优化+欧拉函数+gcd的优化+互质

    这题满满的黑科技orz 题意:给出L,要求求出最小的全部由8组成的数(eg: 8,88,888,8888,88888,.......),且这个数是L的倍数 sol:全部由8组成的数可以这样表示:((1 ...

  3. codeforces 687B - Remainders Game 数学相关(互质中国剩余定理)

    题意:给你x%ci=bi(x未知),是否能确定x%k的值(k已知) ——数学相关知识: 首先:我们知道一些事情,对于k,假设有ci%k==0,那么一定能确定x%k的值,比如k=5和ci=20,知道x% ...

  4. HDU5668 Circle 非互质中国剩余定理

    分析:考虑对给定的出圈序列进行一次模拟,对于出圈的人我们显然可以由位置,编号等关系得到一个同余方程 一圈做下来我们就得到了n个同余方程 对每个方程用扩展欧几里得求解,最后找到最小可行解就是答案. 当然 ...

  5. 转化为用欧几里得算法判断互质的问题D - Wolf and Rabbit

    Description There is a hill with n holes around. The holes are signed from 0 to n-1. A rabbit must h ...

  6. 求N以内与N互质的数的和

    题目连接 /* 求所有小于N且与N不互质的数的和. 若:gcd(n,m)=1,那么gcd(n,n-m)=1; sum(n)=phi(n)*n/2; //sum(n)为小于n的所有与n互质的数的和 // ...

  7. C互质个数

    C互质个数 Time Limit:1000MS  Memory Limit:65536K Total Submit:55 Accepted:27 Description 贝贝.妞妞和康康都长大了,如今 ...

  8. Hello Kiki(中国剩余定理——不互质的情况)

    Hello Kiki Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Su ...

  9. UVA12493 - Stars(求1-N与N互质的个数)欧拉函数

    Sample Input 3 4 5 18 36 360 2147483647 Sample Output 1 1 2 3 6 48 1073741823 题目链接:https://uva.onlin ...

随机推荐

  1. zabbix 安装错误汇总

    由于公司业务需要,当前zabbixserver的压力较大,需要安装一个proxy缓解压力,开始慢慢琢磨proxy的安装.这些文档网上很多,就不在多说了.只把自己遇见的错误拿出来共享下 Zabbixpr ...

  2. centos6+nginx+php+mysql+memcached+wordpress

    centos6+nginx+php+mysql+memcached+wordpress 搭建步骤(1) LNMP 平台搭建: 请参考:http://www.cnblogs.com/ligao/p/61 ...

  3. Access restriction: The type Resource is not accessible due to restriction on required library

    方法一: 全局属性Project>preferences>java>Compiler>Errors/Warnings>把右侧的[Deprecated and restri ...

  4. 1067 Sort with Swap(0, i) (25 分)

    1067 Sort with Swap(0, i) (25 分) Given any permutation of the numbers {0, 1, 2,..., N−1}, it is easy ...

  5. 团队作业(二):ASB

    团队作业(二):团队选题 题目四:基于Android的文件加密系统 系统名称:ASB 一.引言 1.1编写目的 (1)学习并熟悉掌握AES/DES加密算法的原理以及算法 (2)学习并熟悉Android ...

  6. jQuery屏蔽浏览器的滚动事件,定义自己的滚轮事件

    1.首先应用jQuery库 ,不做详细介绍 2引用jQuery的mousewheel库,这里面是这个库的源码,使用时直接拷贝过去就可以了: (function(a){function d(b){var ...

  7. 微软&中科大提出新型自动神经架构设计方法NAO

    近期,来自微软和中国科学技术大学的刘铁岩等人发表论文,介绍了一种新型自动神经架构设计方法 NAO,该方法由三个部分组成:编码器.预测器和解码器.实验证明,该方法所发现的架构在 CIFAR-10 上的图 ...

  8. 进行web开发时应该考虑的架构性因素

    功能实现 这个自不必说. 性能与可伸缩性 根据预期的访问量,评估机器负载情况.如果在可预期的未来一台服务器可以撑得住,则没必要使用多台服务器.需要对多个环节进行性能评估:web服务器.逻辑服务器.DB ...

  9. python之ConfigParser

    以前傻傻的不知道还有configParser这么方便的模块,都是一个个的解析转换…… 配置文件xxxxx # 注释1 ;  注释2 [section1] # 节点 k1 = v1    # 值 k2: ...

  10. tomcat原理解析(一):一个简单的实现

    tomcat原理解析(一):一个简单的实现 https://blog.csdn.net/qiangcai/article/details/60583330 2017年03月07日 09:54:27 逆 ...