Uniform Generator

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 35023    Accepted Submission(s): 13939

Problem Description

Computer simulations often require random numbers. One way to generate pseudo-random numbers is via a function of the form

seed(x+1) = [seed(x) + STEP] % MOD

where '%' is the modulus operator.

Such a function will generate pseudo-random numbers (seed) between 0 and MOD-1. One problem with functions of this form is that they will always generate the same pattern over and over. In order to minimize this effect, selecting the STEP and MOD values carefully can result in a uniform distribution of all values between (and including) 0 and MOD-1.
For example, if STEP = 3 and MOD = 5, the function will generate the series of pseudo-random numbers 0, 3, 1, 4, 2 in a repeating cycle. In this example, all of the numbers between and including 0 and MOD-1 will be generated every MOD iterations of the function. Note that by the nature of the function to generate the same seed(x+1) every time seed(x) occurs means that if a function will generate all the numbers between 0 and MOD-1, it will generate pseudo-random numbers uniformly with every MOD iterations.
If STEP = 15 and MOD = 20, the function generates the series 0, 15, 10, 5 (or any other repeating series if the initial seed is other than 0). This is a poor selection of STEP and MOD because no initial seed will generate all of the numbers from 0 and MOD-1.
Your program will determine if choices of STEP and MOD will generate a uniform distribution of pseudo-random numbers.

Input

Each line of input will contain a pair of integers for STEP and MOD in that order (1 <= STEP, MOD <= 100000).

Output

For each line of input, your program should print the STEP value right- justified in columns 1 through 10, the MOD value right-justified in columns 11 through 20 and either "Good Choice" or "Bad Choice" left-justified starting in column 25. The "Good Choice" message should be printed when the selection of STEP and MOD will generate all the numbers between and including 0 and MOD-1 when MOD numbers are generated. Otherwise, your program should print the message "Bad Choice". After each output test set, your program should print exactly one blank line.

Sample Input

3 5 15 20 63923 99999

Sample Output

3 5 Good Choice 15 20 Bad Choice 63923 99999 Good Choice

该题可以直接暴力求解,也可以找规律,实际上Good Choice当且仅当STEP和MOD互质,下面给出证明。

分析:数论。随机数生成的数字的第x+1个数字为:

seed(x) = (seed(x-1)+STEP)%MOD = (seed(x-1)%MOD + STEP%MOD)%MOD

= (seed(x-2)%MOD + (STEP*2)%MOD)%MOD

= ... = (seed(0)%MOD + (STEP*x)%MOD)%MOD

如果不能生成全部序列一定存在 0 <= i <j < MOD 使得生成值相同,即:

seed(i) = (seed(0)%MOD + (STEP*i)%MOD)%MOD

seed(j) = (seed(0)%MOD + (STEP*j)%MOD)%MOD

由seed(i) = seed(j) 可以得知 (STEP*(j-i))%MOD = 0 且 i ≠ j,即STEP*(j-i)为MOD的倍数:

STEP*(j-i)=k*MOD  ->  (j-i)*STEP/MOD=k  (k属于Z)

又因为 j-i < MOD 所以STEP和MOD必有一个大于1的公因子,即gcd( STEP,MOD ) > 1。

由此可知,可以生成全部序列的充要条件是 gcd( STEP,MOD ) = 1。

说明:注意输出格式,我在这PE过一次。。仔细看题目原来要求输出每个测试样例后输出一行空白。

下面是AC代码:

#include<cstdio>
using namespace std; int gcd(int a,int b){
return b?gcd(b,a%b):a;
} int main(){
int step,mod;
while(scanf("%d%d",&step,&mod)!=EOF){
int res=gcd(step,mod);
if(res==1)
printf("%10d%10d Good Choice\n\n",step,mod);
else
printf("%10d%10d Bad Choice\n\n",step,mod); }
return 0;
}

hdoj1014 互质的更多相关文章

  1. openjudge7834:分成互质组 解析报告

    7834:分成互质组 总时间限制:  1000ms 内存限制:  65536kB 描述 给定n个正整数,将它们分组,使得每组中任意两个数互质.至少要分成多少个组? 输入 第一行是一个正整数n.1 &l ...

  2. poj3696 快速幂的优化+欧拉函数+gcd的优化+互质

    这题满满的黑科技orz 题意:给出L,要求求出最小的全部由8组成的数(eg: 8,88,888,8888,88888,.......),且这个数是L的倍数 sol:全部由8组成的数可以这样表示:((1 ...

  3. codeforces 687B - Remainders Game 数学相关(互质中国剩余定理)

    题意:给你x%ci=bi(x未知),是否能确定x%k的值(k已知) ——数学相关知识: 首先:我们知道一些事情,对于k,假设有ci%k==0,那么一定能确定x%k的值,比如k=5和ci=20,知道x% ...

  4. HDU5668 Circle 非互质中国剩余定理

    分析:考虑对给定的出圈序列进行一次模拟,对于出圈的人我们显然可以由位置,编号等关系得到一个同余方程 一圈做下来我们就得到了n个同余方程 对每个方程用扩展欧几里得求解,最后找到最小可行解就是答案. 当然 ...

  5. 转化为用欧几里得算法判断互质的问题D - Wolf and Rabbit

    Description There is a hill with n holes around. The holes are signed from 0 to n-1. A rabbit must h ...

  6. 求N以内与N互质的数的和

    题目连接 /* 求所有小于N且与N不互质的数的和. 若:gcd(n,m)=1,那么gcd(n,n-m)=1; sum(n)=phi(n)*n/2; //sum(n)为小于n的所有与n互质的数的和 // ...

  7. C互质个数

    C互质个数 Time Limit:1000MS  Memory Limit:65536K Total Submit:55 Accepted:27 Description 贝贝.妞妞和康康都长大了,如今 ...

  8. Hello Kiki(中国剩余定理——不互质的情况)

    Hello Kiki Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Su ...

  9. UVA12493 - Stars(求1-N与N互质的个数)欧拉函数

    Sample Input 3 4 5 18 36 360 2147483647 Sample Output 1 1 2 3 6 48 1073741823 题目链接:https://uva.onlin ...

随机推荐

  1. java判断字符串中是否含有中文

    /** * 判断字符串中是否含有中文 */ public static boolean isCNChar(String s){ boolean booleanValue = false; for(in ...

  2. SVM的sklearn.svm.SVC实现与类参数

    SVC继承了父类BaseSVC SVC类主要方法: ★__init__() 主要参数: C: float参数 默认值为1.0 错误项的惩罚系数.C越大,即对分错样本的惩罚程度越大,因此在训练样本中准确 ...

  3. C# window Service实现调用有UI的应用程序(关于win xp以后的window系统)

    我开发的系统中有一接口程序(这里就称Task,是一个C#的Console Application)经常无故的死掉,导致第二天的数据不能正常解析,所以,我写了一个window service去监视Tas ...

  4. Jenkins配置HTML报告(Windows环境)

    1.首先安装插件HTML Publisher,点击直接安装 2.在任务中配置,构建后操作,添加Publish HTML reports 3.添加完成后,新增一项 4.HTML directory to ...

  5. J2SE 8的泛型

    泛型的简单使用 1. 泛型一般用E表示集合中元素;k和v表示Map中的key和value;R表示return值;T/U/S表示任意类型 //(1) 简单单个元素的泛型 Box<String> ...

  6. Spring MVC 异常处理 - ExceptionHandler

    通过HandlerExceptionResolver 处理程序异常,包括Handler映射, 数据绑定, 以及目标方法执行时的发生的异常 实现类如下 /** * 1. 在 @ExceptionHand ...

  7. CentOS 7 Tomcat安装

    官网: http://tomcat.apache.org/download-80.cgi 下 1.载zip包 >wget http://mirrors.hust.edu.cn/apache/to ...

  8. WP8.1 控件默认字体颜色 配置文件位置

    C:\Program Files (x86)\Windows Phone Kits\8.1\Include\abi\Xaml\Design\generic.xaml 可在App.xaml文件中over ...

  9. MySQL的事务处理及隔离级别

      事务是DBMS得执行单位.它由有限得数据库操作序列组成得.但不是任意得数据库操作序列都能成为事务.一般来说,事务是必须满足4个条件(ACID)       原子性(Autmic):事务在执行性,要 ...

  10. v​n​c​服​务​​安​装​与配置

    一.Redhat上VNC Server配置 本文以当前Linux系统未安装VNC服务器为基本,如果已安装请跳过第1节! 前提: 1.安装 TigerVNC Server # yum search ti ...