一、一般线性回归遇到的问题

在处理复杂的数据的回归问题时,普通的线性回归会遇到一些问题,主要表现在:

  • 预测精度:这里要处理好这样一对为题,即样本的数量和特征的数量

    • 时,最小二乘回归会有较小的方差
    • 时,容易产生过拟合
    • 时,最小二乘回归得不到有意义的结果
  • 模型的解释能力:如果模型中的特征之间有相互关系,这样会增加模型的复杂程度,并且对整个模型的解释能力并没有提高,这时,我们就要进行特征选择。

以上的这些问题,主要就是表现在模型的方差和偏差问题上,这样的关系可以通过下图说明:

(摘自:机器学习实战)

方差指的是模型之间的差异,而偏差指的是模型预测值和数据之间的差异。我们需要找到方差和偏差的折中。

二、岭回归的概念

在进行特征选择时,一般有三种方式:

  • 子集选择
  • 收缩方式(Shrinkage method),又称为正则化(Regularization)。主要包括岭回归个lasso回归。
  • 维数缩减

岭回归(Ridge Regression)是在平方误差的基础上增加正则项

,

通过确定的值可以使得在方差和偏差之间达到平衡:随着的增大,模型方差减小而偏差增大。

求导,结果为

令其为0,可求得的值:

三、实验的过程

我们去探讨一下取不同的对整个模型的影响。

MATLAB代码

主函数

  1. %% 岭回归(Ridge Regression)
  2. %导入数据
  3. data = load('abalone.txt');
  4. [m,n] = size(data);
  5. dataX = data(:,1:8);%特征
  6. dataY = data(:,9);%标签
  7. %标准化
  8. yMeans = mean(dataY);
  9. for i = 1:m
  10. yMat(i,:) = dataY(i,:)-yMeans;
  11. end
  12. xMeans = mean(dataX);
  13. xVars = var(dataX);
  14. for i = 1:m
  15. xMat(i,:) = (dataX(i,:) - xMeans)./xVars;
  16. end
  17. % 运算30次
  18. testNum = 30;
  19. weights = zeros(testNum, n-1);
  20. for i = 1:testNum
  21. w = ridgeRegression(xMat, yMat, exp(i-10));
  22. weights(i,:) = w';
  23. end
  24. % 画出随着参数lam
  25. hold on
  26. axis([-9 20 -1.0 2.5]);
  27. xlabel log(lam);
  28. ylabel weights;
  29. for i = 1:n-1
  30. x = -9:20;
  31. y(1,:) = weights(:,i)';
  32. plot(x,y);
  33. end

岭回归求回归系数的函数

    1. function [ w ] = ridgeRegression( x, y, lam )
    2. xTx = x'*x;
    3. [m,n] = size(xTx);
    4. temp = xTx + eye(m,n)*lam;
    5. if det(temp) == 0
    6. disp('This matrix is singular, cannot do inverse');
    7. end
    8. w = temp^(-1)*x'*y;
    9. end

http://blog.csdn.net/google19890102/article/details/27228279

数值计算方法的“稳定性”是指在计算过程中舍入误差是可以控制的。

对于有些矩阵,矩阵中某个元素的一个很小的变动,会引起最后计算结果误差很大,这种矩阵称为“病态矩阵”。有些时候不正确的计算方法也会使一个正常的矩阵在运算中表现出病态。对于高斯消去法来说,如果主元(即对角线上的元素)上的元素很小,在计算时就会表现出病态的特征。

回归分析中常用的最小二乘法是一种无偏估计。

当X列满秩时,有

X+表示X的广义逆(或叫伪逆)。

当X不是列满秩,或者某些列之间的线性相关性比较大时,XTX的行列式接近于0,即XTX接近于奇异,计算(XTX)-1时误差会很大。此时传统的最小二乘法缺乏稳定性与可靠性。

岭回归是对最小二乘回归的一种补充,它损失了无偏性,来换取高的数值稳定性,从而得到较高的计算精度。

当XTX的行列式接近于0时,我们将其主对角元素都加上一个数k,可以使矩阵为奇异的风险大降低。于是:

     (I是单位矩阵)

随着k的增大,B(k)中各元素bi(k)的绝对值均趋于不断变小,它们相对于正确值bi的偏差也越来越大。k趋于无穷大时,B(k)趋于0。b(k)随k的改变而变化的轨迹,就称为岭迹。实际计算中可选非常多的k值,做出一个岭迹图,看看这个图在取哪个值的时候变稳定了,那就确定k值了。

X不满足列满秩,换句话就是说样本向量之间具有高度的相关性(如果每一列是一个向量的话)。遇到列向量相关的情形,岭回归是一种处理方法,也可以用主成分分析PCA来进行降维。

http://www.cnblogs.com/zhangchaoyang 作者:Orisun

岭回归(Ridge Regression)的更多相关文章

  1. Jordan Lecture Note-4: Linear & Ridge Regression

    Linear & Ridge Regression 对于$n$个数据$\{(x_1,y_1),(x_2,y_2),\cdots,(x_n,y_n)\},x_i\in\mathbb{R}^d,y ...

  2. L1,L2范数和正则化 到lasso ridge regression

    一.范数 L1.L2这种在机器学习方面叫做正则化,统计学领域的人喊她惩罚项,数学界会喊她范数. L0范数  表示向量xx中非零元素的个数. L1范数  表示向量中非零元素的绝对值之和. L2范数  表 ...

  3. 在线场景感知:图像稀疏表示—ScSPM和LLC总结(以及lasso族、岭回归)

    前言: 场景感知其实不分三维场景和二维场景,可以使用通用的方法,不同之处在于数据的形式,以及导致前期特征提取及后期在线场景分割过程.场景感知即是场景语义分析问题,即分析场景中物体的特征组合与相应场景的 ...

  4. Ridge Regression(岭回归)

    Ridge Regression岭回归 数值计算方法的"稳定性"是指在计算过程中舍入误差是可以控制的. 对于有些矩阵,矩阵中某个元素的一个很小的变动,会引起最后计算结果误差很大,这 ...

  5. scikit-learn中的岭回归(Ridge Regression)与Lasso回归

    一.岭回归模型 岭回归其实就是在普通最小二乘法回归(ordinary least squares regression)的基础上,加入了正则化参数λ. 二.如何调用 class sklearn.lin ...

  6. 机器学习:模型泛化(岭回归:Ridge Regression)

    一.基础理解 模型正则化(Regularization) # 有多种操作方差,岭回归只是其中一种方式: 功能:通过限制超参数大小,解决过拟合或者模型含有的巨大的方差误差的问题: 影响拟合曲线的两个因子 ...

  7. 线性回归——lasso回归和岭回归(ridge regression)

    目录 线性回归--最小二乘 Lasso回归和岭回归 为什么 lasso 更容易使部分权重变为 0 而 ridge 不行? References 线性回归很简单,用线性函数拟合数据,用 mean squ ...

  8. Sklearn库例子3:分类——岭回归分类(Ridge Regression )例子

    为了解决数据的特征比样本点还多的情况,统计学家引入了岭回归. 岭回归通过施加一个惩罚系数的大小解决了一些普通最小二乘的问题.回归系数最大限度地减少了一个惩罚的误差平方和. 这里是一个复杂的参数,用来控 ...

  9. 机器学习方法:回归(二):稀疏与正则约束ridge regression,Lasso

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. "机器学习方法"系列,我本着开放与共享(open and share)的精神撰写,目的是 ...

随机推荐

  1. 【CF886E】Maximum Element DP

    [CF886E]Maximum Element 题意:小P有一个1-n的序列,他想找到整个序列中最大值的出现位置,但是他觉得O(n)扫一遍太慢了,所以它采用了如下方法: 1.逐个遍历每个元素,如果这个 ...

  2. 上拉刷新和下拉刷新的两种方法(包括使用第三方库MJRefresh)

    一.使用苹果原生的方法 1.下拉刷新 2.上拉刷新 (1 首先要新建一个footer得XIB文件,当然同时包括对应的控制器文件,例如在XIB文件中可以如下拖拉对应的控件 (2 然后在代码文件中写一个实 ...

  3. JAVAORM框架之Mybatis (Ibatis) 详解

    目录 Mybatis基础概念 Mybatis开放方式演进 Mybatis框架核心要点 关联查询 延迟加载(懒加载) 动态SQL Mybatis缓存 Mybatis逆向工程 PageHelper分页插件 ...

  4. T49

    明天参加媳妇朋友的婚礼.今天晚上的火车,下班后匆忙的打了个的,正好到的哥交接班的时间拦了几辆车都不拉火车站!无奈-五分钟后打上车接上媳妇去火车站!正值五中学生放假路上各种堵!安阳这四线城市什么时候变的 ...

  5. 代码使用了php的包管理器composer,include到你的php脚本

    使用数据库进行crontab配置管理,除非你能够保证数据库的请求能够在长时间内保持稳定响应的话.推荐使用nosql类型的cache存储,同时做好持久化备份. 测试代码: define('DS', DI ...

  6. CSU 1808 - 地铁 - [最短路变形]

    题目链接:http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1808 Time limit: 5000 ms Memory limit: 13107 ...

  7. CodeForces - 617E XOR and Favorite Number 莫队算法

    https://vjudge.net/problem/CodeForces-617E 题意,给你n个数ax,m个询问Ly,Ry,  问LR内有几对i,j,使得ai^...^ aj =k. 题解:第一道 ...

  8. Oracle安装部署之Oracle 10g在redhat5下的安装

    [root@localhost ~]# groupadd dba -g 111 [root@localhost ~]# groupadd oinstall -g 110 [root@localhost ...

  9. Sorted sets

    Redis in Action JOSIAH L. CARLSON MANNING Shelter Island ZSETs offer the ability to store a mapping ...

  10. python 几个重要的概念

    转自:http://www.cnblogs.com/aylin/p/5601969.html