# file: neural_net_dense_batch.py
#===============================================================================
# Copyright 2014-2018 Intel Corporation.
#
# This software and the related documents are Intel copyrighted materials, and
# your use of them is governed by the express license under which they were
# provided to you (License). Unless the License provides otherwise, you may not
# use, modify, copy, publish, distribute, disclose or transmit this software or
# the related documents without Intel's prior written permission.
#
# This software and the related documents are provided as is, with no express
# or implied warranties, other than those that are expressly stated in the
# License.
#=============================================================================== #
# ! Content:
# ! Python example of neural network training and scoring
# !***************************************************************************** #
## <a name="DAAL-EXAMPLE-PY-NEURAL_NET_DENSE_BATCH"></a>
## \example neural_net_dense_batch.py
# import os
import sys import numpy as np from daal.algorithms.neural_networks import initializers
from daal.algorithms.neural_networks import layers
from daal.algorithms import optimization_solver
from daal.algorithms.neural_networks import training, prediction
from daal.data_management import NumericTable, HomogenNumericTable utils_folder = os.path.realpath(os.path.abspath(os.path.dirname(os.path.dirname(__file__))))
if utils_folder not in sys.path:
sys.path.insert(0, utils_folder)
from utils import printTensors, readTensorFromCSV # Input data set parameters
trainDatasetFile = os.path.join("..", "data", "batch", "neural_network_train.csv")
trainGroundTruthFile = os.path.join("..", "data", "batch", "neural_network_train_ground_truth.csv")
testDatasetFile = os.path.join("..", "data", "batch", "neural_network_test.csv")
testGroundTruthFile = os.path.join("..", "data", "batch", "neural_network_test_ground_truth.csv") fc1 = 0
fc2 = 1
sm1 = 2 batchSize = 10 def configureNet():
# Create layers of the neural network
# Create fully-connected layer and initialize layer parameters
fullyConnectedLayer1 = layers.fullyconnected.Batch(5)
fullyConnectedLayer1.parameter.weightsInitializer = initializers.uniform.Batch(-0.001, 0.001)
fullyConnectedLayer1.parameter.biasesInitializer = initializers.uniform.Batch(0, 0.5) # Create fully-connected layer and initialize layer parameters
fullyConnectedLayer2 = layers.fullyconnected.Batch(2)
fullyConnectedLayer2.parameter.weightsInitializer = initializers.uniform.Batch(0.5, 1)
fullyConnectedLayer2.parameter.biasesInitializer = initializers.uniform.Batch(0.5, 1) # Create softmax layer and initialize layer parameters
softmaxCrossEntropyLayer = layers.loss.softmax_cross.Batch() # Create configuration of the neural network with layers
topology = training.Topology() # Add layers to the topology of the neural network
topology.push_back(fullyConnectedLayer1)
topology.push_back(fullyConnectedLayer2)
topology.push_back(softmaxCrossEntropyLayer)
topology.get(fc1).addNext(fc2)
topology.get(fc2).addNext(sm1)
return topology def trainModel():
# Read training data set from a .csv file and create a tensor to store input data
trainingData = readTensorFromCSV(trainDatasetFile)
trainingGroundTruth = readTensorFromCSV(trainGroundTruthFile, True) sgdAlgorithm = optimization_solver.sgd.Batch(fptype=np.float32) # Set learning rate for the optimization solver used in the neural network
learningRate = 0.001
sgdAlgorithm.parameter.learningRateSequence = HomogenNumericTable(1, 1, NumericTable.doAllocate, learningRate)
# Set the batch size for the neural network training
sgdAlgorithm.parameter.batchSize = batchSize
sgdAlgorithm.parameter.nIterations = int(trainingData.getDimensionSize(0) / sgdAlgorithm.parameter.batchSize) # Create an algorithm to train neural network
net = training.Batch(sgdAlgorithm) sampleSize = trainingData.getDimensions()
sampleSize[0] = batchSize # Configure the neural network
topology = configureNet()
net.initialize(sampleSize, topology) # Pass a training data set and dependent values to the algorithm
net.input.setInput(training.data, trainingData)
net.input.setInput(training.groundTruth, trainingGroundTruth) # Run the neural network training and retrieve training model
trainingModel = net.compute().get(training.model)
# return prediction model
return trainingModel.getPredictionModel_Float32() def testModel(predictionModel):
# Read testing data set from a .csv file and create a tensor to store input data
predictionData = readTensorFromCSV(testDatasetFile) # Create an algorithm to compute the neural network predictions
net = prediction.Batch() net.parameter.batchSize = predictionData.getDimensionSize(0) # Set input objects for the prediction neural network
net.input.setModelInput(prediction.model, predictionModel)
net.input.setTensorInput(prediction.data, predictionData) # Run the neural network prediction
# and return results of the neural network prediction
return net.compute() def printResults(predictionResult):
# Read testing ground truth from a .csv file and create a tensor to store the data
predictionGroundTruth = readTensorFromCSV(testGroundTruthFile) printTensors(predictionGroundTruth, predictionResult.getResult(prediction.prediction),
"Ground truth", "Neural network predictions: each class probability",
"Neural network classification results (first 20 observations):", 20) topology = ""
if __name__ == "__main__": predictionModel = trainModel() predictionResult = testModel(predictionModel) printResults(predictionResult)

  目前支持的Layers

    • Common Parameters
    • Fully Connected Forward Layer
    • Fully Connected Backward Layer
    • Absolute Value ForwardLayer
    • Absolute Value Backward Layer
    • Logistic ForwardLayer
    • Logistic BackwardLayer
    • pReLU ForwardLayer
    • pReLU BackwardLayer
    • ReLU Forward Layer
    • ReLU BackwardLayer
    • SmoothReLU ForwardLayer
    • SmoothReLU BackwardLayer
    • Hyperbolic Tangent Forward Layer
    • Hyperbolic Tangent Backward Layer
    • Batch Normalization Forward Layer
    • Batch Normalization Backward Layer
    • Local-Response Normalization ForwardLayer
    • Local-Response Normalization Backward Layer
    • Local-Contrast Normalization ForwardLayer
    • Local-Contrast Normalization Backward Layer
    • Dropout ForwardLayer
    • Dropout BackwardLayer
    • 1D Max Pooling Forward Layer
    • 1D Max Pooling Backward Layer
    • 2D Max Pooling Forward Layer
    • 2D Max Pooling Backward Layer
    • 3D Max Pooling Forward Layer
    • 3D Max Pooling Backward Layer
    • 1D Average Pooling Forward Layer
    • 1D Average Pooling Backward Layer
    • 2D Average Pooling Forward Layer
    • 2D Average Pooling Backward Layer
    • 3D Average Pooling Forward Layer
    • 3D Average Pooling Backward Layer
    • 2D Stochastic Pooling Forward Layer
    • 2D Stochastic Pooling Backward Layer
    • 2D Spatial Pyramid Pooling ForwardLayer
    • 2D Spatial Pyramid Pooling BackwardLayer
    • 2D Convolution Forward Layer
    • 2D Convolution Backward Layer
    • 2D Transposed Convolution ForwardLayer
    • 2D Transposed Convolution BackwardLayer
    • 2D Locally-connected Forward Layer
    • 2D Locally-connected Backward Layer
    • Reshape ForwardLayer
    • Reshape BackwardLayer
    • Concat ForwardLayer
    • Concat BackwardLayer
    • Split Forward Layer
    • Split Backward Layer
    • Softmax ForwardLayer
    • Softmax BackwardLayer
    • Loss Forward Layer
    • Loss Backward Layer
    • Loss Softmax Cross-entropy ForwardLayer
    • Loss Softmax Cross-entropy BackwardLayer
    • Loss Logistic Cross-entropy ForwardLayer
    • Loss Logistic Cross-entropy BackwardLayer
    • Exponential Linear Unit Forward Layer
    • Exponential Linear Unit Backward Layer

Intel DAAL AI加速——神经网络的更多相关文章

  1. Intel DAAL AI加速——支持从数据预处理到模型预测,数据源必须使用DAAL的底层封装库

    数据源加速见官方文档(必须使用DAAL自己的库): Data Management Numeric Tables Tensors Data Sources Data Dictionaries Data ...

  2. Intel DAAL AI加速 ——传统决策树和随机森林

    # file: dt_cls_dense_batch.py #===================================================================== ...

  3. 英特尔® 至强® 平台集成 AI 加速构建数据中心智慧网络

    英特尔 至强 平台集成 AI 加速构建数据中心智慧网络 SNA 通过 AI 方法来实时感知网络状态,基于网络数据分析来实现自动化部署和风险预测,从而让企业网络能更智能.更高效地为最终用户业务提供支撑. ...

  4. 释放至强平台 AI 加速潜能 汇医慧影打造全周期 AI 医学影像解决方案

    基于英特尔架构实现软硬协同加速,显著提升新冠肺炎.乳腺癌等疾病的检测和筛查效率,并帮助医疗科研平台预防"维度灾难"问题 <PAGE 1 LEFT COLUMN: CUSTOM ...

  5. tesorflow - create neural network+结果可视化+加速神经网络训练+Optimizer+TensorFlow

    以下仅为了自己方便查看,绝大部分参考来源:莫烦Python,建议去看原博客 一.添加层 def add_layer() 定义 add_layer()函数 在 Tensorflow 里定义一个添加层的函 ...

  6. Intel daal数据预处理

    https://software.intel.com/en-us/daal-programming-guide-datasource-featureextraction-py # file: data ...

  7. TensorFlow实战第三课(可视化、加速神经网络训练)

    matplotlib可视化 构件图形 用散点图描述真实数据之间的关系(plt.ion()用于连续显示) # plot the real data fig = plt.figure() ax = fig ...

  8. deeplearning.ai 卷积神经网络 Week 3 目标检测 听课笔记

    本周的主题是对象检测(object detection):不但需要检测出物体(image classification),还要能定位出在图片的具体位置(classification with loca ...

  9. 吴恩达deepLearning.ai循环神经网络RNN学习笔记_看图就懂了!!!(理论篇)

    前言 目录: RNN提出的背景 - 一个问题 - 为什么不用标准神经网络 - RNN模型怎么解决这个问题 - RNN模型适用的数据特征 - RNN几种类型 RNN模型结构 - RNN block - ...

随机推荐

  1. 关于linux中的上下文切换

    对于linux中的上下文一直以来没有特别的关注其合理范围应该是多少(关于上下文切换的概念,网上已经有很多解释了,再次不再重复),白天偶尔注意到了一下,晚上特地看了下白天负载和和收盘后的负载如下(服务器 ...

  2. JAVA学习调查问卷——20145101

    1.你对自己的未来有什么规划?做了哪些准备? 我希望在未来不管自己是否从事机要工作,都要做一个有能力,对社会能有所贡献的人.所以在现阶段我应该努力学习基础知识,夯实基本功,具备成为合格机要人的素质. ...

  3. 20145227鄢曼君《网络对抗》Web基础

    20145227鄢曼君<网络对抗>Web基础 实验内容 (1)Web前端HTML (2)Web前端javascipt (3)Web后端:MySQL基础:正常安装.启动MySQL,建库.创建 ...

  4. Android项目开发一

    Android项目开发一   进度计划 1.第一周 开源中国注册账号:http://my.oschina.net/u/2511208,并上传Android HelloWorld程序代码 搭建Andro ...

  5. Linux中设备号及设备文件【转】

    本文转载自:http://blog.csdn.net/ymangu666/article/details/39292651 主.次设备号 应用程序可以通过对/dev 目录下的设备文件读写,从而访问实际 ...

  6. POJ 1845 Sumdiv(求因数和 + 逆元)题解

    题意:给你a,b,要求给出a^b的因子和取模9901的结果. 思路:求因子和的方法:任意A = p1^a1 * p2^a2 ....pn^an,则因子和为sum =(1 + p1 + p1^2 + . ...

  7. 《EMCAScript6入门》读书笔记——24.编程风格

  8. C#学习笔记(二十):C#总结和月考讲解

    m1w1d2_console_variable_constant 输入Console.WriteLine(); 输出Console.ReadLine(); 快捷键 折叠代码:快捷键“Ctrl+ K + ...

  9. 《C语言程序设计》指针篇<二>

    通过指针引用多维数组 如何理解二维数组元素的地址? 要知道,这本书用了整整两页的内容来讲解这方面的知识,从这里足以看出来理解通过指针来引用二维数组是一件比较麻烦的事情,但是我认为理解并不难. 什么是二 ...

  10. POJ 1018 Communication System(DP)

    http://poj.org/problem?id=1018 题意: 某公司要建立一套通信系统,该通信系统需要n种设备,而每种设备分别可以有m1.m2.m3.....mn个厂家提供生产,而每个厂家生产 ...