题目描述

经典区间众数题目

然而是权限题,所以题目链接放Luogu的

题解

因为太菜所以只会$O(n*\sqrt{n}+n*\sqrt{n}*log(n))$的做法

就是那种要用二分的,并不会clj那种不带log的做法

首先数的值域为1e9肯定要离散化一下

因为数最多有40000个所以开40000个vector,存一下每个数出现的位置

预处理出每个以块的端点为左右端点的区间的众数,这种区间一共有O(block^2)个,所以可以用O(n*block)的时间复杂度来预处理

可以发现的一点是,每个区间的众数,要么是散块里面的数,要么是中间所有整块的区间众数(因为散块中出现的那些数增加了中间的整块中第二大第三大的这些区间众数的出现次数,他们就有可能篡位了)

那么我们可以在离散化之后,将每个数出现的位置存到一个vector里面,在处理散块中的数的时候,我们可以通过二分查找找出这个区间中该数出现过几次(二分查找右端点和左端点相减),效率是$O(\sqrt{n}*log(n))$

整块直接调用我们预处理出来的区间众数就可以了

#include <bits/stdc++.h>

#define ll long long
#define inf 0x3f3f3f3f
#define il inline namespace io { #define in(a) a=read()
#define out(a) write(a)
#define outn(a) out(a),putchar('\n') #define I_int int
inline ll read() {
ll x = , f = ; char c = getchar() ;
while( c < '' || c > '' ) { if( c == '-' ) f = - ; c = getchar() ; }
while( c >= '' && c <= '' ) { x = x * + c - '' ; c = getchar() ; }
return x * f ;
}
char F[ ] ;
inline void write( I_int x ) {
if( x == ) { putchar( '' ) ; return ; }
I_int tmp = x > ? x : -x ;
if( x < ) putchar( '-' ) ;
int cnt = ;
while( tmp > ) {
F[ cnt ++ ] = tmp % + '' ;
tmp /= ;
}
while( cnt > ) putchar( F[ -- cnt ] ) ;
}
#undef I_int }
using namespace io ; using namespace std ; #define N 100010 map< int , int > mp ;
vector< int > vt[ N ] ;
int val[ N ] , a[ N ] ;
int t[ ][ ] ;
int n , tot = ;
int block , num , bl[ N ] , L[ N ] , R[ N ] ;
int cnt[ N ] ; void pre( int x ) {
int mx = , id = ;
memset( cnt , , sizeof( cnt ) ) ;
for( int i = L[ x ] ; i <= n ; i ++ ) {
cnt[ a[ i ] ] ++ ;
if( cnt[ a[ i ] ] > mx || (cnt[ a[ i ] ] == mx && val[ a[ i ] ] < val[ id ] ) ) {
mx = cnt[ a[ i ] ] ; id = a[ i ] ;
}
t[ x ][ bl[ i ] ] = id ;
}
} void build() {
block = ;
num = n / block ;
if( n % block ) num ++ ;
for( int i = ; i <= num ; i ++ ) {
L[ i ] = (i - ) * block + ;
R[ i ] = i * block ;
}
R[ num ] = n ;
for( int i = ; i <= n ; i ++ ) bl[ i ] = (i - ) / block + ;
for( int i = ; i <= num ; i ++ ) pre( i ) ;
} int serach_ans( int l , int r , int x ) {
return upper_bound( vt[ x ].begin() , vt[ x ].end() , r ) - lower_bound( vt[ x ].begin() , vt[ x ].end() , l ) ;
} int query( int l , int r ) {
int mx = , id = t[ bl[ l ] + ][ bl[ r ] - ] ;
mx = serach_ans( l , r , id ) ;
if( bl[ l ] == bl[ r ] ) {
for( int i = l ; i <= r ; i ++ ) {
int x = serach_ans( l , r , a[ i ] ) ;
if( x > mx || (x == mx && val[ a[ i ] ] < val[ id ])) { mx = x ; id = a[ i ] ; }
}
return id ;
}
for( int i = l ; i <= R[ bl[ l ] ] ; i ++ ) {
int x = serach_ans( l , r , a[ i ] ) ;
if( x > mx || (x == mx && val[ a[ i ] ] < val[ id ])) { mx = x ; id = a[ i ] ; }
}
for( int i = L[ bl[ r ] ] ; i <= r ; i ++ ) {
int x = serach_ans( l , r , a[ i ] ) ;
if( x > mx || (x == mx && val[ a[ i ] ] < val[ id ])) { mx = x ; id = a[ i ] ; }
}
return id ;
} int main() {
n = read() ; int m = read() ;
int ans = ;
for( int i = ; i <= n ; i ++ ) {
a[ i ] = read() ;
if( mp[ a[ i ] ] == ) { mp[ a[ i ] ] = ++ tot , val[ tot ] = a[ i ] ; }
a[ i ] = mp[ a[ i ] ] ;
vt[ a[ i ] ].push_back( i ) ;
}
build() ;
for( int i = ; i <= m ; i ++ ) {
int l = read() , r = read() ;
l = (l + ans - ) % n + , r = (r + ans - ) % n + ;
if( l > r ) swap( l , r ) ;
outn( ans = val[ query( l , r ) ] ) ;
}
return ;
}

BZOJ2724 [Violet]蒲公英 分块的更多相关文章

  1. BZOJ2724 [Violet]蒲公英(分块)

    区间众数.分块,预处理任意两块间所有数的众数,和每块中所有数的出现次数的前缀和.查询时对不是整块的部分暴力,显然只有这里出现的数可能更新答案.于是可以优美地做到O(n√n). #include< ...

  2. [Violet]蒲公英 分块

    发现写算法专题老是写不动,,,, 所以就先把我在luogu上的题解搬过来吧! 题目大意:查询区间众数,无修改,强制在线 乍一看是一道恐怖的题,仔细一看发现并没有那么难: 大致思路是这样的,首先我们要充 ...

  3. Luogu P4168 [Violet]蒲公英 分块

    这道题算是好好写了.写了三种方法. 有一个好像是$qwq$$N\sqrt(N)$的方法,,但是恳请大佬们帮我看看为什么这么慢$qwq$(后面的第三种) 注:$pos[i]$表示$i$属于第$pos[i ...

  4. [BZOJ2724][Violet 6]蒲公英

    [BZOJ2724][Violet 6]蒲公英 试题描述 输入 修正一下 l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n + 1 输出 输入示 ...

  5. 【BZOJ2724】蒲公英(分块)

    [BZOJ2724]蒲公英(分块) 题面 洛谷 谴责权限题的行为 题解 分块什么的都不会,根本就没写过几次. 复杂度根本不会分析,吓得我赶快来练练. 这题要求的是区间众数,显然没有什么很好的主席树之类 ...

  6. 洛谷 P4168 [Violet]蒲公英 解题报告

    P4168 [Violet]蒲公英 题目背景 亲爱的哥哥: 你在那个城市里面过得好吗? 我在家里面最近很开心呢.昨天晚上奶奶给我讲了那个叫「绝望」的大坏蛋的故事的说!它把人们的房子和田地搞坏,还有好多 ...

  7. 【BZOJ2724】[Violet 6]蒲公英 分块+二分

    [BZOJ2724][Violet 6]蒲公英 Description Input 修正一下 l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n ...

  8. BZOJ2724 [Violet 6]蒲公英 分块

    原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ2724.html 题目传送门 - BZOJ2724 题意 求区间最小众数,强制在线. $n$ 个数,$m ...

  9. 【分块】bzoj2724 [Violet 6]蒲公英

    分块,离散化,预处理出: ①前i块中x出现的次数(差分): ②第i块到第j块中的众数是谁,出现了多少次. 询问的时候,对于整块的部分直接获得答案:对于零散的部分,暴力统计每个数出现的次数,加上差分的结 ...

随机推荐

  1. 用 Python 替代 Bash 脚本(转)

    add by zhj: 其实作者是想说用Python来做那些Bash实现起来比较麻烦的部分,即将Bash与Python结合使用. 英文原文:http://www.linuxjournal.com/co ...

  2. (转)Mysql 多表查询详解

    MySQL 多表查询详解 一.前言  二.示例 三.注意事项 一.前言  上篇讲到mysql中关键字执行的顺序,只涉及了一张表:实际应用大部分情况下,查询语句都会涉及到多张表格 : 1.1 多表连接有 ...

  3. 【Cocos2dx 3.3 Lua】剪裁结点ClippingNode

    参考资料:     http://shahdza.blog.51cto.com/2410787/1561937 http://blog.csdn.net/jackystudio/article/det ...

  4. 在Keras模型中one-hot编码,Embedding层,使用预训练的词向量/处理图片

    最近看了吴恩达老师的深度学习课程,又看了python深度学习这本书,对深度学习有了大概的了解,但是在实战的时候, 还是会有一些细枝末节没有完全弄懂,这篇文章就用来总结一下用keras实现深度学习算法的 ...

  5. 消息 8101,级别 16,状态 1,第 1 行 仅当使用了列列表并且 IDENTITY_INSERT 为 ON 时,才能为表'ResourceInfo'中的标识列指定显式值。

    问题分析: 意思是你的主键是自动编号类型的,所以不能向该列插入数据. 解决办法: 执行 语句 :SET IDENTITY_INSERT CUSTOMER_TBL ON 然后在向表中插入数据,如inse ...

  6. 2:3 Action的配置

    < 一 作用> 一:封装工作单元(相当于是控制层,封装出modelAndView) 二:定义name属性接受前台传过来的数据,再定义message属性,用于存放返回前台页面展示的数 据,实 ...

  7. 浏览器内核控制标签meta说明

    由于众所周知的原因,国内的主流浏览器都是双核浏览器:基于Webkit的内核用于常用网站的高速浏览,基于IE的内核主要用于部分网银.政府.办公系统等网站的正常使用.以360浏览器为例,我们优先通过Web ...

  8. BP神经网络原理详解

    转自博客园@编程De: http://www.cnblogs.com/jzhlin/archive/2012/07/28/bp.html  http://blog.sina.com.cn/s/blog ...

  9. POI导出EXCEL经典实现(转)

    http://www.cnblogs.com/xwdreamer/archive/2011/07/20/2296975.html 1.Apache POI简介 Apache POI是Apache软件基 ...

  10. uva11419 二分图--最小覆盖=最大匹配

    大白书355 // UVa11419 SAM I AM // Rujia Liu #include <cstdio> #include <cstring> #include & ...