ACM Computer Factory
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 8944   Accepted: 3267   Special Judge

Description

As you know, all the computers used for ACM contests must be identical, so the participants compete on equal terms. That is why all these computers are historically produced at the same factory.

Every ACM computer consists of P parts. When all these parts are present, the computer is ready and can be shipped to one of the numerous ACM contests.

Computer manufacturing is fully automated by using N various machines. Each machine removes some parts from a half-finished computer and adds some new parts (removing of parts is sometimes necessary as the parts cannot be added to a computer in arbitrary order). Each machine is described by its performance (measured in computers per hour), input and output specification.

Input specification describes which parts must be present in a half-finished computer for the machine to be able to operate on it. The specification is a set of P numbers 0, 1 or 2 (one number for each part), where 0 means that corresponding part must not be present, 1 — the part is required, 2 — presence of the part doesn't matter.

Output specification describes the result of the operation, and is a set of P numbers 0 or 1, where 0 means that the part is absent, 1 — the part is present.

The machines are connected by very fast production lines so that delivery time is negligibly small compared to production time.

After many years of operation the overall performance of the ACM Computer Factory became insufficient for satisfying the growing contest needs. That is why ACM directorate decided to upgrade the factory.

As different machines were installed in different time periods, they were often not optimally connected to the existing factory machines. It was noted that the easiest way to upgrade the factory is to rearrange production lines. ACM directorate decided to entrust you with solving this problem.

Input

Input file contains integers P N, then N descriptions of the machines. The description of ith machine is represented as by 2 P + 1 integers Qi Si,1 Si,2...Si,P Di,1 Di,2...Di,P, where Qi specifies performance, Si,j — input specification for part jDi,k — output specification for part k.

Constraints

1 ≤ P ≤ 10, 1 ≤ ≤ 50, 1 ≤ Qi ≤ 10000

Output

Output the maximum possible overall performance, then M — number of connections that must be made, then M descriptions of the connections. Each connection between machines A and B must be described by three positive numbers A B W, where W is the number of computers delivered from A to B per hour.

If several solutions exist, output any of them.

Sample Input

Sample input 1
3 4
15 0 0 0 0 1 0
10 0 0 0 0 1 1
30 0 1 2 1 1 1
3 0 2 1 1 1 1
Sample input 2
3 5
5 0 0 0 0 1 0
100 0 1 0 1 0 1
3 0 1 0 1 1 0
1 1 0 1 1 1 0
300 1 1 2 1 1 1
Sample input 3
2 2
100 0 0 1 0
200 0 1 1 1

Sample Output

Sample output 1
25 2
1 3 15
2 3 10
Sample output 2
4 5
1 3 3
3 5 3
1 2 1
2 4 1
4 5 1
Sample output 3
0 0

Hint

Bold texts appearing in the sample sections are informative and do not form part of the actual data.

题意:

题意很难理解,想了半天才看懂。有n台机器,每台机器有三个参数:输入规格、输出规格、产量。输入规格有三个参数:0(不需要零件)、1(必须要零件)、2(随便)。输出规格有两个参数:0(不产出零件)、1(产出零件)。所以,对于输入规格为“012”的机器,需要输出规格为“010”或者“011”的机器与之相连。若一台机器输入规格是“000”说明他是最开始那台机器(因为不用放入零件),相同,一台机器输出规格是“111”说明他是最后那台机器(因为所有零件他都生产,组装成一台电脑)。求生产最大的产量、能生产电脑的产品线数量...

思考:

用网络流最大流,大白有模板。代码里有比较详细的解释。

代码:

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<queue>
#include<cmath>
#include<string>
#include<map>
#include<stack>
#include<set>
#include<vector>
#include<iostream>
#include<algorithm>
#include<sstream>
#define ll long long
const int N=510;
const int INF=1e9;
using namespace std; struct Edge{
int from,to,cap,flow; //cap容量,flow流量
}; struct Dinic{
int n,m,s,t; //结点数,边数(包括反向弧),源点,汇点
vector<Edge> edge; //边表
vector<int> G[N]; //邻接表,G[i][j]表示结点i的第j条边在edge中的序号
bool vis[N]; //BFS使用
int d[N]; //从s到i的举例(层数)
int cur[N]; //弧下标 void init(int n){
this->n=n;
edge.clear();
for(int i=0;i<=n;i++) G[i].clear();
} void add(int from,int to,int cap){ //from,to,cap,flow
edge.push_back((Edge){from,to,cap,0}); //压入边
edge.push_back((Edge){to,from,0,0}); //反向弧
m=edge.size();
G[from].push_back(m-2); //边序号
G[to].push_back(m-1); //反向弧序号
} bool bfs(){ //分层
memset(vis,0,sizeof(vis));
memset(d,-1,sizeof(d));
queue<int> q;
q.push(s);
d[s]=0;
vis[s]=1;
while(!q.empty()){
int x=q.front();
q.pop();
for(int i=0;i<G[x].size();i++){ //同一结点边遍历
Edge& e=edge[G[x][i]]; //e为当前边
if(!vis[e.to] && e.cap>e.flow){ //如果当前边未走过 && 流量还能增加
vis[e.to]=1;
d[e.to]=d[x]+1; //分层
q.push(e.to);
}
}
}
return vis[t]; //没访问t回复false
} int dfs(int x,int a){ //a为当前所有弧最小残量
if(x==t || a==0) return a;
int flow=0,f;
for(int &i=cur[x];i<G[x].size();i++){
Edge &e=edge[G[x][i]];
if(d[x]+1==d[e.to] && (f=dfs(e.to,min(a,e.cap-e.flow)) )>0 ){ //有下一层 && 还能增广
e.flow+=f; //流量增加
edge[G[x][i]^1].flow-=f; //反向弧减少
flow+=f; //flow将每一条通路的最小残量相加
a-=f;
if(a==0) break;
}
}
return flow;
} int maxflow(int s,int t){
this->s=s;
this->t=t;
int flow=0;
while(bfs()){
memset(cur,0,sizeof(cur));
flow+=dfs(s,INF);
}
return flow;
}
}; bool judge(int out[],int in[],int p){ //0-0:2 1-1:2
for(int i=0;i<p;i++){
if(out[i]!=in[i] && in[i]!=2) return false;
}
return true;
} int main(){
int s,t,p,n,w[55],in[55][15],out[55][15];
while(~scanf("%d%d",&p,&n)){
Dinic D;
D.init(t);
s=0;t=2*n+1;
for(int i=1;i<=n;i++){
scanf("%d",&w[i]);
bool flag=true;
for(int j=0;j<p;j++){
scanf("%d",&in[i][j]);
if(in[i][j]==1) flag=false;
}
if(flag) D.add(s,i,INF); //与源点相连
flag=true;
for(int j=0;j<p;j++){
scanf("%d",&out[i][j]);
if(out[i][j]==0) flag=false;
}
if(flag) D.add(i+n,t,INF); //与汇点相连
}
for(int i=1;i<=n;i++){
D.add(i,i+n,w[i]); //内部相连
for(int j=1;j<=n;j++){
if(i==j) continue;
if(judge(out[i],in[j],p)) D.add(i+n,j,INF);
}
} int flow=D.maxflow(s,t); //得到最大流 int cnt=0;
for(int i=0;i<D.edge.size();i++){
if(D.edge[i].from==s||D.edge[i].to==s||D.edge[i].from==t||D.edge[i].to==t)
continue;
if((D.edge[i].from+n)==D.edge[i].to||(D.edge[i].from-n)==D.edge[i].to)
continue;
if(D.edge[i].flow<0) //找到反向弧
cnt++;
}
printf("%d %d\n",flow,cnt);
for(int i=0;i<D.edge.size();i++){
if(D.edge[i].from==s||D.edge[i].to==s||D.edge[i].from==t||D.edge[i].to==t)
continue;
if((D.edge[i].from+n)==D.edge[i].to||(D.edge[i].from-n)==D.edge[i].to)
continue;
if(D.edge[i].flow<0){ //找到反向弧
cout<<D.edge[i].to-n<<" "<<D.edge[i].from<<" "<<D.edge[i].flow*(-1)<<endl;
}
}
}
return 0;
}

模板:

struct Edge{
int from,to,cap,flow; //cap容量,flow流量
}; struct Dinic{
int n,m,s,t; //结点数,边数(包括反向弧),源点,汇点
vector<Edge> edge; //边表
vector<int> G[N]; //邻接表,G[i][j]表示结点i的第j条边在edge中的序号
bool vis[N]; //BFS使用
int d[N]; //从s到i的举例(层数)
int cur[N]; //弧下标 void init(int n){
this->n=n;
edge.clear();
for(int i=0;i<=n;i++) G[i].clear();
} void add(int from,int to,int cap){ //from,to,cap,flow
edge.push_back((Edge){from,to,cap,0}); //压入边
edge.push_back((Edge){to,from,0,0}); //反向弧
m=edge.size();
G[from].push_back(m-2); //边序号
G[to].push_back(m-1); //反向弧序号
} bool bfs(){ //分层
memset(vis,0,sizeof(vis));
memset(d,-1,sizeof(d));
queue<int> q;
q.push(s);
d[s]=0;
vis[s]=1;
while(!q.empty()){
int x=q.front();
q.pop();
for(int i=0;i<G[x].size();i++){ //同一结点边遍历
Edge& e=edge[G[x][i]]; //e为当前边
if(!vis[e.to] && e.cap>e.flow){ //如果当前边未走过 && 流量还能增加
vis[e.to]=1;
d[e.to]=d[x]+1; //分层
q.push(e.to);
}
}
}
return vis[t]; //没访问t回复false
} int dfs(int x,int a){ //a为当前所有弧最小残量
if(x==t || a==0) return a;
int flow=0,f;
for(int &i=cur[x];i<G[x].size();i++){
Edge &e=edge[G[x][i]];
if(d[x]+1==d[e.to] && (f=dfs(e.to,min(a,e.cap-e.flow)) )>0 ){ //有下一层 && 还能增广
e.flow+=f; //流量增加
edge[G[x][i]^1].flow-=f; //反向弧减少
flow+=f; //flow将每一条通路的最小残量相加
a-=f;
if(a==0) break;
}
}
return flow;
} int maxflow(int s,int t){
this->s=s;
this->t=t;
int flow=0;
while(bfs()){
memset(cur,0,sizeof(cur));
flow+=dfs(s,INF);
}
return flow;
}
};

POJ3436 ACM Computer Factory(最大流/Dinic)题解的更多相关文章

  1. POJ3436 ACM Computer Factory —— 最大流

    题目链接:https://vjudge.net/problem/POJ-3436 ACM Computer Factory Time Limit: 1000MS   Memory Limit: 655 ...

  2. poj-3436.ACM Computer Factory(最大流 + 多源多汇 + 结点容量 + 路径打印 + 流量统计)

    ACM Computer Factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10940   Accepted:  ...

  3. POJ-3436 ACM Computer Factory 最大流 为何拆点

    题目链接:https://cn.vjudge.net/problem/POJ-3436 题意 懒得翻,找了个题意. 流水线上有N台机器装电脑,电脑有P个部件,每台机器有三个参数,产量,输入规格,输出规 ...

  4. POJ3436 ACM Computer Factory(最大流)

    题目链接. 分析: 题意很难懂. 大体是这样的:给每个点的具体情况,1.容量 2.进入状态 3.出去状态.求最大流. 因为有很多点,所以如果一个点的出去状态满足另一个点的进入状态,则这两个点可以连一条 ...

  5. POJ3436 ACM Computer Factory 【最大流】

    ACM Computer Factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5412   Accepted: 1 ...

  6. poj3436 ACM Computer Factory, 最大流,输出路径

    POJ 3436 ACM Computer Factory 电脑公司生产电脑有N个机器.每一个机器单位时间产量为Qi. 电脑由P个部件组成,每一个机器工作时仅仅能把有某些部件的半成品电脑(或什么都没有 ...

  7. POJ-3436 ACM Computer Factory(网络流EK)

    As you know, all the computers used for ACM contests must be identical, so the participants compete ...

  8. Poj 3436 ACM Computer Factory (最大流)

    题目链接: Poj 3436 ACM Computer Factory 题目描述: n个工厂,每个工厂能把电脑s态转化为d态,每个电脑有p个部件,问整个工厂系统在每个小时内最多能加工多少台电脑? 解题 ...

  9. POJ-3436:ACM Computer Factory (Dinic最大流)

    题目链接:http://poj.org/problem?id=3436 解题心得: 题目真的是超级复杂,但解出来就是一个网络流,建图稍显复杂.其实提炼出来就是一个工厂n个加工机器,每个机器有一个效率w ...

随机推荐

  1. (3.12)mysql基础深入——mysql日志文件/其他文件(socket/pid/表结构/Innodb)

    (3.12)mysql基础深入——mysql日志文件/其他文件(socket/pid/表结构/Innodb) 关键词:mysql日志文件,mysqldumpslow分析工具 目录:日志文件的分类 1. ...

  2. android ImageView加圆角

    1.attrs添加 <declare-styleable name="RoundImageView"> <attr name="circle" ...

  3. UIStoryboard跳转界面

    /**1.创建Storyboard,加载Storyboard的名字,这里是自己创建的Storyboard的名字*/ UIStoryboard *storyboard = [UIStoryboard s ...

  4. spring boot配置service发布服务

    在application.yml中配置 server: port: 8080 context-path: /crm spring: datasource: driver-class-name: com ...

  5. [vue]vue双向绑定$on $emit sync-模态框

    双向绑定实现($on $emit) 关于父子之间数据更新同步, 如果单向绑定, 子修改了,父却没有修改, 这种一般不符合规范 正常更新数据的套路是: 1. 子通知父更新数据 2. 子自动刷新获取最新数 ...

  6. Period(sdut2476)

    [题目大意]:给定一个字符串,求到哪一位时的字串是前几位循环组成的,并求出循环次数. 思路:求每个前缀的最小循环周:从i到n枚举len,如果len%(len-next[len])==0,则这个前缀是由 ...

  7. Linux文本编辑器快捷方式

  8. 获取Let`s Encrypt证书的三种方式

    1,acme.sh 方式 1)获取acme脚本 curl https://get.acme.sh | sh 2)开始获取证书 acme.sh强大之处在于,可以自动配置DNS,不用去域名后台操作解析记录 ...

  9. 集成树模型使用自动搜索模块GridSearchCV,stacking

    一. GridSearchCV参数介绍 导入模块: from sklearn.model_selection import GridSearchCV GridSearchCV 称为网格搜索交叉验证调参 ...

  10. 摄影EV值深入研究

    1. 什么是EV值 1.1. EV值定义 EV(Exposure Value),曝光值,是反应曝光量的一个值.当感光度为ISO 100.光圈值为F1.曝光时间为1秒时,定义曝光量为0.曝光量减少一档时 ...