Spark中的键值对操作-scala
1.PairRDD介绍
val rdd=sc.parallelize(List("this is a test","how are you","do you love me","can you tell me"));
//获取第一个单词作为键
val words =rdd.map(x=>(x.split(" ")(0),x));
words.collect().foreach(println);

| 函数名 | 目的 | 示例 | 结果 |
| substractByKey | 删掉RDD中键与other RDD 中的键相同的元素 |
rdd.subtractByKey(other) | {(1,2)} |
| join | 对两个RDD进行内连接 |
rdd.join(other) | {(3,(4,9)),(3,(6,9))} |
| rightOuterJoin | 对两个RDD进行连接操作,右外连接 | rdd.rightOuterJoin(other) | {(3,(4,9)),(3,(6,9))} |
| leftOuterJoin | 对两个RDD进行连接操作,左外连接 | rdd.rightOuterJoin(other) | {(1,(2,None)),(3,(4,9)),(3,(6,9))} |
| cogroup | 将两个RDD中拥有相同键的数据分组 | rdd.cogroup(other) | {1,([2],[]),(3,[4,6],[9])} |
val results=words.filter(value => value._2.length()<20);
results.foreach(println)
val rdd=sc.parallelize(List("this is a test","how are you","do you love me","can you tell me"));
val words =rdd.flatMap(line => line.split(" "));
val results=words.map(word => (word,1)).reduceByKey( {case(x,y) => x+y});
results.foreach(println)
val nums = sc.parallelize(List(Tuple2(1, 1), Tuple2(1, 3), Tuple2(2, 2), Tuple2(2, 8)));
val results=nums.foldByKey(0)({case(x,y)=>x+y})
results.collect().foreach(println)
val nums = sc.parallelize(List(Tuple2(1, 1), Tuple2(1, 3), Tuple2(2, 2), Tuple2(2, 8)));
val results=nums.combineByKey(
(v)=>(v,1),
(acc:(Int,Int),v) =>(acc._1+v,acc._2+1),
(acc1:(Int,Int),acc2:(Int,Int))=>(acc1._1+acc2._1,acc1._2+acc2._2)
).map{case(key,value)=>(key,value._1/value._2.toFloat)}
results.collectAsMap().map(println)
val results=nums.reduceByKey({(x,y) =>x+y},2);
val nums = sc.parallelize(List(Tuple2(1, 1), Tuple2(1, 3), Tuple2(2, 2), Tuple2(2, 8)));
val group=nums.groupByKey();
val results=group.collect();
for(value <- results){
print(value._1+": ")
for(elem <- value._2)
print(elem+" ")
println()
}
val nums1 = sc.parallelize(List(Tuple2(1, 1), Tuple2(2, 2), Tuple2(1, 3),Tuple2(2, 4),Tuple2(3, 4)));
val nums2 = sc.parallelize(List(Tuple2(1,1),Tuple2(1,3),Tuple2(2,3)))
val results=nums1.cogroup(nums2)
for(tuple2 <- results.collect()){
print(tuple2._1+" [ ")
for(it <- tuple2._2._1)
print(it+" ")
print("] [ ")
for(it<-tuple2._2._2)
print(it+" ")
println("]")
}
val nums =sc.parallelize(List(12,4,6,8,0,8));
//隐式转换声明排序的依据
implicit val sortIntegersByString = new Ordering[Int] {
override def compare(x: Int, y: Int): Int = x.toString().compareTo(y.toString())
}
val results=nums.sortBy(value=>value);
results.collect().foreach(println)
val nums = sc.parallelize(List(Tuple2(1, 1), Tuple2(2, 2), Tuple2(1, 3),Tuple2(2, 4),Tuple2(3, 4)));
//隐式转换声明排序的依据
implicit val sortIntegersByString = new Ordering[Int] {
override def compare(x: Int, y: Int): Int = x.toString().compareTo(y.toString())
}
val results=nums.sortByKey();
results.collect().foreach(println)
val list1 =List(Tuple2("zhou",List("it","math")),Tuple2("gan",List("money","book")))
val list2= List(Tuple2("zhou","it"),Tuple2("zhou","stock"),Tuple2("gan","money"),Tuple2("gan","book"))
val userData =sc.parallelize(list1)
val events = sc.parallelize(list2)
val joined=userData.join(events)
val results=joined.filter({
case (id, (info, link)) =>
!info.contains(link)
}
).count()
println(results)
val list1 =List(Tuple2("zhou",List("it","math")),Tuple2("gan",List("money","book")))
val list2= List(Tuple2("zhou","it"),Tuple2("zhou","stock"),Tuple2("gan","money"),Tuple2("gan","book"))
val userData =sc.parallelize(list1).partitionBy(new HashPartitioner(100)).persist(StorageLevel.MEMORY_ONLY)
val list1 =List(Tuple2("zhou",List("it","math")),Tuple2("gan",List("money","book")))
val list2= List(Tuple2("zhou","it"),Tuple2("zhou","stock"),Tuple2("gan","money"),Tuple2("gan","book"))
val userData =sc.parallelize(list1).partitionBy(new HashPartitioner(100)).persist(StorageLevel.MEMORY_ONLY)
println(userData.partitioner)
/*
#以下是url的内容:
www.baidu.com www.hao123.com
www.baidu.com www.2345.com
www.baidu.com www.zhouyang.com
www.hao123.com www.baidu.com
www.hao123.com www.zhouyang.com
www.zhouyang.com www.baidu.com
*/
val inputs =sc.textFile("C:\\url.txt")
//url,[urls]
val links =inputs.map(x=>(x.split(" ")(0),x.split(" ")(1)))
.distinct()
.groupByKey()
.cache()
//url,rank
var ranks =links.mapValues(value =>1.0)
for(i<-0 until 10){
val contribs =links.join(ranks).flatMap({
case(pageid,(links,rank))=>
//url Double
links.map(dest=>(dest,rank/links.size))
})
//reduce and add the contribs
ranks=contribs.reduceByKey((x,y)=>x+y).mapValues(v => 0.15+0.85*v)
}
ranks.collect().foreach(println)
class DomainNamePartitioner (numParts:Int) extends Partitioner{
override def numPartitions: Int = numParts
//根据hashCode和numPartitions取余来得到Partition,因为返回的必须是非负数,所以对于hashCode为负的情况做了特殊处理
override def getPartition(key: Any): Int = {
val domain = new URL(key.toString).getHost();
val code=(domain.hashCode%numPartitions)
if(code<0){
code+numPartitions
}else{
code
}
}
override def equals(other:Any):Boolean = other match {
//这个实例是DomainNamePartitioner的实例,并且numPartitions相同,返回true
case dnp:DomainNamePartitioner =>
dnp.numPartitions==numPartitions
//否则,返回false
case _ => false
}
}
Spark中的键值对操作-scala的更多相关文章
- Spark中的键值对操作
1.PairRDD介绍 Spark为包含键值对类型的RDD提供了一些专有的操作.这些RDD被称为PairRDD.PairRDD提供了并行操作各个键或跨节点重新进行数据分组的操作接口.例如,Pa ...
- Spark学习之键值对操作总结
键值对 RDD 是 Spark 中许多操作所需要的常见数据类型.键值对 RDD 通常用来进行聚合计算.我们一般要先通过一些初始 ETL(抽取.转化.装载)操作来将数据转化为键值对形式.键值对 RDD ...
- Spark学习笔记——键值对操作
键值对 RDD是 Spark 中许多操作所需要的常见数据类型 键值对 RDD 通常用来进行聚合计算.我们一般要先通过一些初始 ETL(抽取.转化.装载)操作来将数据转化为键值对形式. Spark 为包 ...
- Redis中的键值过期操作
1.过期设置 Redis 中设置过期时间主要通过以下四种方式: expire key seconds:设置 key 在 n 秒后过期: pexpire key milliseconds:设置 key ...
- Redis源码解析:09redis数据库实现(键值对操作、键超时功能、键空间通知)
本章对Redis服务器的数据库实现进行介绍,说明Redis数据库相关操作的实现,包括数据库中键值对的添加.删除.查看.更新等操作的实现:客户端切换数据库的实现:键超时相关功能的实现.键空间事件通知等. ...
- Spark学习笔记3:键值对操作
键值对RDD通常用来进行聚合计算,Spark为包含键值对类型的RDD提供了一些专有的操作.这些RDD被称为pair RDD.pair RDD提供了并行操作各个键或跨节点重新进行数据分组的操作接口. S ...
- Spark学习之键值对(pair RDD)操作(3)
Spark学习之键值对(pair RDD)操作(3) 1. 我们通常从一个RDD中提取某些字段(如代表事件时间.用户ID或者其他标识符的字段),并使用这些字段为pair RDD操作中的键. 2. 创建 ...
- spark入门(三)键值对操作
1 简述 Spark为包含键值对类型的RDD提供了一些专有的操作.这些RDD被称为PairRDD. 2 创建PairRDD 2.1 在sprk中,很多存储键值对的数据在读取时直接返回由其键值对数据组成 ...
- Spark基础:(三)Spark 键值对操作
1.pair RDD的简介 Spark为包含键值对类型的RDD提供了一些专有的操作,这些RDD就被称为pair RDD 那么如何创建pair RDD呢? 在不同的语言中有着不同的创建方式 在pytho ...
随机推荐
- 转 Android中通过广播方式调起第三方App
今天紧急的跟进一个百度视频App无法调起百度贴吧App的问题,当然,这个是只发现是在4.x的android系统下发生,在2.x版本下,一切正常,(其实是3.1及以上的版本都有问题)具体场景为: 1.贴 ...
- gen_create_syn.sql
set echo off feedback off verify off pagesize 0 linesize 120 ---变量从 sqlplus 的 call代码 传递过来 . -- 1 表示连 ...
- shell与if相关参数
[ -a FILE ] 如果 FILE 存在则为真. [ -b FILE ] 如果 FILE 存在且是一个块特殊文件则为真. [ -c FILE ] 如果 FILE 存在且是一个字特殊文件则为真. [ ...
- logo集锦
收集一个酷酷的技术公司的logo,一方面学习其中的美,另一方面打算用代码的画出这些logo算做致敬.感谢他们改变了我们的世界. 三星 苹果 戴尔 谷歌 IBM intel 惠普
- 水流(water)
水流(water) 题目描述 全球气候变暖,小镇A面临水灾,于是你必须买一些泵把水抽走.泵的抽水能力可以认为是无穷大,但你必须把泵放在合适的位置,从而能使所有的水能流到泵里.小镇可以认为是N×M的矩阵 ...
- python自动发邮件总结及实例说明
python发邮件需要掌握两个模块的用法,smtplib和email,这俩模块是python自带的,只需import即可使用.smtplib模块主要负责发送邮件,email模块主要负责构造邮件. sm ...
- MAC 10.10解决 PHP GD库的问题
1. http://yangjunwei.com/a/1570.html 2. http://php-osx.liip.ch
- hibernate--student_course_score
学生, 课程,分数的设计. a)使用联合主键@EmbeddedId 使用Serializable接口 b)不适用联合主键 联合主键: 3张表, student: id, name course: id ...
- 关于iOS性能调优
性能调优一直都是作为高阶iOS开发者的一个入门门槛,下面我搜集了日常查阅资料中见到的各种高质量调优博文,仅供参考 UIKit性能调优实战讲解 iOS 高效添加圆角效果实战讲解
- HTML5 Canvas | w3cschool菜鸟教程
HTML5 Canvas <canvas> 标签定义图形,比如图表和其他图像,您必须使用脚本来绘制图形.. 在画布上(Canvas)画一个红色矩形,梯度矩形,彩色矩形,和一些彩色的文字. ...