Network

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 847    Accepted Submission(s): 347

Problem Description
The
ALPC company is now working on his own network system, which is
connecting all N ALPC department. To economize on spending, the backbone
network has only one router for each department, and N-1 optical fiber
in total to connect all routers.
The usual way to measure connecting
speed is lag, or network latency, referring the time taken for a sent
packet of data to be received at the other end.
Now the network is on
trial, and new photonic crystal fibers designed by ALPC42 is trying
out, the lag on fibers can be ignored. That means, lag happened when
message transport through the router. ALPC42 is trying to change routers
to make the network faster, now he want to know that, which router, in
any exactly time, between any pair of nodes, the K-th high latency is.
He needs your help.
 
Input
There are only one test case in input file.
Your
program is able to get the information of N routers and N-1 fiber
connections from input, and Q questions for two condition: 1. For some
reason, the latency of one router changed. 2. Querying the K-th longest
lag router between two routers.
For each data case, two integers N and Q for first line. 0<=N<=80000, 0<=Q<=30000.
Then n integers in second line refer to the latency of each router in the very beginning.
Then N-1 lines followed, contains two integers x and y for each, telling there is a fiber connect router x and router y.
Then
q lines followed to describe questions, three numbers k, a, b for each
line. If k=0, Telling the latency of router a, Ta changed to b; if
k>0, asking the latency of the k-th longest lag router between a and b
(include router a and b). 0<=b<100000000.
A blank line follows after each case.
 
Output
For
each question k>0, print a line to answer the latency time. Once
there are less than k routers in the way, print "invalid request!"
instead.
 
Sample Input
5 5
5 1 2 3 4
3 1
2 1
4 3
5 3
2 4 5
0 1 2
2 2 3
2 1 4
3 3 5
 
Sample Output
3
2
2
invalid request!
 
题意:给出n个点,m条询问,依次输入n个点都有权值,以及n-1条边,接下来m条询问每次输入 k a b如果 k=0 ,则更新a点的权值为b,如果k>0,则输出a-b这条路径上权值第K大的点,如果没有第K大点,输出invalid request!
今天做这个题,正好借这个题总结一下LCA的在线算法。
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAQAAAAFHCAIAAADBTQXlAAAKT0lEQVR4nO3d23kiyxKEUezCIOzBGpzBGOYBfRpEd1ffKzMj/vV2jkaosjJCQow0+/ICjF2iDwBEogCwRgFgjQLAGgWANQoAaxQA1igArFEAWKMAsEYBYI0CwBoFgDUKAGsUANYoAKxRAFijALBGAWCNAsAaBYA1CgBrFADWKACsUQBYowCwRgFgjQLAGgWANQoAaxQA1igArFEAWKMAsEYBYI0CwBoFgDUKAGsUANYoAKxRAFijALBGAWCNAsAaBYA1CgBrFADWKACs+RbgMhB9IgSw23oj7jTBkNGyl4ebGvhwWfOGQNMBBxY7nory83693B4b3hEy9Bc8HuLn/fp+otMswOS7Q4X+docJft6vl+v9+Xo9bhTAnfh22/FdUoDZB0Fp4qulAGhTXu1scBcWYMlDoSjlvVIAzFLeKwXALOW9UgDMUt4rBcAs5b1SAMxS3utRqSX9wsRXe0h2KYAw8dVSALTpr3ZnfEm/Nv3tUgA0WGx3c4hJvzyXBa/9LUd+K9KE146X/07wqj+PurwW3P5HUEbfRAe0GW13mOwl/y4QBdBmtF2+FcaQy2r3hJgCCHNZLX8bgFEWe90fXwqgymKv/EQQpugv9cDg0gE9+hulAGgQ3+jhkaUDYsTXSQHQprzOk8JKB5Qo75ICYJbsLk+NKR2QIbvIszNKBzRobrFDOimABs0t9kknHRAguMJuuaQAAgRX2DOXdKA6tf11TiQFqE5tf/0TSQdKk1peSBYpQGk6ywsMIh2oS2dzsSmkA0WJrC08f+EHwDYia8uQvwxnwFoKO0uSvCTHwCoKO8uTvDwnwULlF5Yqc6kOgyXKLyxb5rKdB221t5UzbTlPhVG1V5UzajlPhVGFV5U5Z5nPhk+F95Q5ZJnPhk9V95Q/YflPiBcFOE/+E+JVtABVslXlnM5KbqhQsAod1VO99dSKVK3TGqq3nnKRKndgK8V2UzFMFc/so9huioap6LEdVFpM3RjVPbm8MoupnqHq51dVZisCARIYQU+NlWhER2MKMTVWIhMdmUFkFNiHUmiUZtFQYB9ioREbp7rsy9CLi95EpWVfhmRcJIcqKvUmVIOiOldFqTchHBTh0WrJuwb5iMgPWELeHcjnQ37AEpLuwCQcJmNmlnQBJskwGTOzjAuwioXVsAllvH2rTFgNm1DMf1bxy9db+x8pluHIeXT9j6oP4z58k2caPKfOoMe9T+V+z58U4zl1Bqff+6rV8kUAnZ176RvSv+EdNRiOnMGJl75zo26BaL82gJNQgGCNFwBoQgdnXe4ha5Pf/XDAqVfJuhzHEQWIsfZTO18KTnLKnR64KsmtbxtK8irC9SzA4/bxHd71/tzxULVtHkryNmL1K8Dj9hH6x21hB/RWzmsDqYQ9BXrcFjVAbN98a5QNBeiKAmQTVIDn/Wr5FIgCZBPxMujzfl32HYDYpnlxLKHeBXiHf+FrQGJrpgAJ9fxRiJ/w3x7b3r289kQfLxLPf3rQu5wo/QrwuC0P/8i7C2hM9Lxff69myfdHepcTpduPQz9ua+IvueClQz3v17m7kryfEL1+Iebn6c+X8c9zqtulAAnxK5H9LBttQfwpwHHS/VK8tukZ/3+JnP0W2OGiukn3z6JoWzLsuwqNrwFWN3Y2rrKrhdltvGJA+o/Fbfa29AelKEAX3GaAQYgft4+8N54CuT1j7IDbDDCS4z8vE08+/78Y/7tJJ+Eqw6zK8WdnKMCBuMpIn1FuxHr4JjpwFO4xWOPl4PbfnHQ5nT7uMYu1fz1CBw7BJWaxIdB0YD9uMAsKEIIbzGJbmunATlxfCptzTAF24vpS2JNjOrAHd5fCzhDTgc24uBQoQBQuLoX9CaYD23BrKVCAKNxaCofElw5swJWlcFR26cBa3FcKFCAK95XCgcGlA6twWfEOjywdWI6bikcBAnFT8c7IKx1YiGuKRwECcU3xTgorHViCO4p3XlLpwCwuKB4FCMQFxTs1pnSgjduJRwECcTvxzs4oHWjgauJ1CCgdmMK9BOsTTQowhXsJ1i2adGAUlxKMAsTiUoL1zCUdGOJGgnUOJR34wnUEowCxuI5g/RNJBz5xF8EoQCzuIlhIHOnALy4iWFQW6cAbtxCMAsTiFiLFppAOvChALAoQjiuIFB7B8AOEc58/Vob8ZThDIOvhw2UIX4YzBLIePlyS8CU5RgjfyTNIkrwkxwjhO3kGeZKX5ySdmY6dRKrYpTpMN44z55Eqc6kO043jzEkkDFzCI53NbuA8cqYt56nO4zVtKjmjlvNU5/GaNpW0UUt7sDMYjZpN2pylPdgZjEbNJnPOMp/tWC5zJpQ8ZMmPdxSLIXNKnrDkxzuKxZA55U9Y/hPupz9hWvnjlf+E++lPmFaJeJU45B7i46VVKFiFjrqB8myZFUpVoaNuoDxbZrVSVeu0q8gOllytSNU67SqygyVXLlLlDryQ5lT5VcxTxTPPEhyphIphqnjmWYIjlVA0TEWP3aA2TxVFk1T02A1q81RRN0l1Tz5KaphCSseo9OG/6ExSSPUAVT//J51JChEIkMAIbyJj1CKQHoER3kTGqEUjPSJTRB/AkUZ0XhKDlB+gIoHcvAkMUn6AigRy86v6LLVPX1T10HwpPU7ho9dVOjFDpccpfPS6SidmVN2Jqp67rrpZaag7VNVz11U3K21F5yp56HIuA9EnOkXFueqduJZh3N//U7IGFSeqd+IqpiL++X/q1aDcOMWOW0UjB8M3lQtNw+h0mZ/+5TqNhg07zhaLPX5naXwNzDNvlnPI2LzaPJnYb0nEk9Qg/gRKdm40QyD2W5Xs8JEVbjwPCvD5/Gftu4Qof+N5zC3yeb9eLpfbY/sjZPf1Ate2d+ys9o2n0t7iO/7tAsw+SGY7X92KGrzqdSfUWuHzfr1cb7erVQF6vvv2jxvyUSVNr/B5v16u9+fzLluA/cemAOVNrfBxu1yu9+fPsyAKcO6DrP6g/T+kqtH9fYaeAnR4kNUftP+HVDWyv99P/q/Xa0EBiqb/RQHw9rXCnxd+hiZaQAH2P8jqD9r/Qwpb8Eqox1eA53f3Z575jT5IF1VvPK3GFtsFqJv+13gB/j/32/IIvRS+9LSmdtkoQOn0v/0Z4XFb9kl/4t07Kn/vOZX4S9BjUQD8UehHgo/yO8vXtwCzVeBngWRNRVws+r+GQ83+DCA/Dapv+EJo9IlONJzu71+HzPzhzpQ3gShfJR99TSjJJ4L4E0DVb8S/viVOEv23LOeAksft/yf85E//cp0GKj5fB1r3emhnFADWKACsUQBYowCwRgFgjQLAGgWANQoAaxQA1igArFEAWKMAsEYBYI0CwBoFgDUKAGsUANYoAKxRAFijALBGAWCNAsAaBYA1CgBrFADWKACsUQBYowCwRgFgjQLAGgWANQoAaxQA1igArFEAWKMAsEYBYI0CwBoFgDUKAGsUANYoAKxRAFijALBGAWCNAsAaBYA1CgBrFADWKACsUQBYowCwRgFgjQLAGgWANQoAaxQA1igArP0D9uFuh3o+pZMAAAAASUVORK5CYII=" alt="" />
上图为测试用例:
LCA的在线算法,先要对此树进行预处理(为以后的RMQ做准备),即进行深搜。
我们设立三个数组:ver,first,deep ver数组保存树的前序遍历结点的结果,first保存结点第一次出现的位置,deep保存每个节点出现的深度
对此树进行先序遍历:
ver: 1 2 1 3 4 3 5 3 1
deep:1 2 1 2 3 2 3 2 1
first:1 2 4 5 7
从这里可以知道 ver和deep都要开两倍大小。
然后如果查询结点 2 5,先找到2以及5第一次出现的位置,first[2] = 2,first[5] = 7
那么2和5的最近公共祖先必定在ver[2]-ver[7]区间中。那么接下来,我们只要拿出这段区间内深度最小的点,那么这个点就肯定是2 5的最近公共祖先了
所以这里找区间最小值我们就可以利用RMQ算法了(这里RMQ的数组保存的是下标,因为deep和ver数组是通过下标联系起来的)。找到了2 1 2 3 2 3中
深度最小的是deep[3],对应ver中的ver[3]=1,所以2 和 5的最近公共祖先是1
了解了过程,代码也就能够写出来了。
然后关于这题:我们要找a - b中的第K大点,那么我们记录一个父亲数组,u->lca,v->lca反着找就OK。
/*
5 5
5 1 2 3 4 3 1 2 1 4 3 5 3
2 4 5
*/
#include<iostream>
#include<cstdio>
#include<algorithm>
#include <string.h>
#include <math.h>
#define N 80005
using namespace std; struct Edge{
int u,v,next;
}edge[*N];
int head[N];
int deep[*N];
int vis[N];
int first[N];
int ver[*N];
int father[N];
int dp[*N][];
int value[N];
int path[N];
int tot; void add_edge(int u,int v,int &k){ ///Á´Ê½Ç°ÏòÐÇ
edge[k].u = u,edge[k].v = v;
edge[k].next = head[u];head[u] = k++;
}
void dfs(int u,int dep,int pre){
vis[u]=true,ver[++tot]=u,first[u]=tot,deep[tot]=dep,father[u]=pre;
for(int k=head[u];k!=-;k=edge[k].next){
if(!vis[edge[k].v]){
dfs(edge[k].v,dep+,u);
ver[++tot] = u,deep[tot]=dep;
}
}
}
int MIN(int i,int j){
if(deep[i]<deep[j]) return i;
return j;
}
void init_RMQ(int n){
for(int i=;i<=n;i++) dp[i][]=i;
for(int j=;(<<j)<=n;j++){
for(int i=;i+(<<j)-<=n;i++){
dp[i][j] = MIN(dp[i][j-],dp[i+(<<(j-))][j-]);
}
}
}
int RMQ(int L,int R){
int k = (int)(log(R-L+1.0)/log(2.0));
int a = dp[L][k];
int b = dp[R-(<<k)+][k];
return MIN(a,b);
}
int LCA(int a,int b){
int x = first[a],y = first[b];
//printf("%d %d\n",deep[x],deep[y]);
if(x>y) swap(x,y);
//printf("RMQ(x,y): %d\n",RMQ(x,y));
return ver[RMQ(x,y)];
}
int cmp(int a,int b){
return a>b;
}
void solve(int k,int u,int v){
int lca = LCA(u,v);
tot=;
while(u!=lca){
path[tot++] = value[u];
u = father[u];
}
while(v!=lca){
path[tot++] = value[v];
v = father[v];
}
//printf("lca = %d\n",lca);
path[tot++] = value[lca];
//printf("path[tot-1] = %d\n",path[tot-1]);
if(k>tot){
printf("invalid request!\n");
return;
}
sort(path,path+tot,cmp);
//for(int i=0;i<tot;i++) printf("%d ",path[i]);
printf("%d\n",path[k-]);
}
int main()
{
int n,m;
while(scanf("%d%d",&n,&m)!=EOF){
memset(head,-,sizeof(head));
memset(father,-,sizeof(father));
for(int i=;i<=n;i++){
scanf("%d",&value[i]);
}
tot = ;
for(int i=;i<n;i++){
int u,v;
scanf("%d%d",&u,&v);
add_edge(u,v,tot);
add_edge(v,u,tot);
}
tot = ;
dfs(,,-);
init_RMQ(*n-);
while(m--){
int k,a,b;
scanf("%d%d%d",&k,&a,&b);
if(k==){
value[a]=b;
}else{
solve(k,a,b);
}
}
}
return ;
}
 

hdu 3078(LCA的在线算法)的更多相关文章

  1. LCA(倍增在线算法) codevs 2370 小机房的树

    codevs 2370 小机房的树 时间限制: 1 s  空间限制: 256000 KB  题目等级 : 钻石 Diamond 题目描述 Description 小机房有棵焕狗种的树,树上有N个节点, ...

  2. HDU 3078 (LCA+树链第K大)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3078 题目大意:定点修改.查询树中任意一条树链上,第K大值. 解题思路: 先用离线Tarjan把每个 ...

  3. HDU 3078 LCA转RMQ

    题意: n个点 m个询问 下面n个数字表示点权值 n-1行给定一棵树 m个询问 k u v k为0时把u点权值改为v 或者问 u-v的路径上 第k大的数 思路: LCA转RMQ求出 LCA(u,v) ...

  4. LCA(最近公共祖先)——dfs+ST 在线算法

    一.前人种树 博客:浅谈LCA的在线算法ST表 二.沙场练兵 题目:POJ 1330 Nearest Common Ancestors 题解博客:http://www.cnblogs.com/Miss ...

  5. LCA最近公共祖先 ST+RMQ在线算法

    对于一类题目,是一棵树或者森林,有多次查询,求2点间的距离,可以用LCA来解决.     这一类的问题有2中解决方法.第一种就是tarjan的离线算法,还有一中是基于ST算法的在线算法.复杂度都是O( ...

  6. LCA在线算法ST算法

    求LCA(近期公共祖先)的算法有好多,按在线和离线分为在线算法和离线算法. 离线算法有基于搜索的Tarjan算法较优,而在线算法则是基于dp的ST算法较优. 首先说一下ST算法. 这个算法是基于RMQ ...

  7. LCA在线算法详解

    LCA(最近公共祖先)的求法有多种,这里先介绍第一种:在线算法. 声明一下:下面的内容参考了http://www.cnblogs.com/scau20110726/archive/2013/05/26 ...

  8. POJ 1330 Nearest Common Ancestors (LCA,倍增算法,在线算法)

    /* *********************************************** Author :kuangbin Created Time :2013-9-5 9:45:17 F ...

  9. POJ 1330 Nearest Common Ancestors (LCA,dfs+ST在线算法)

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14902   Accept ...

随机推荐

  1. 51nod 1962 区间计数(单调栈+二分)

    维护两个单调递减的栈,当i加进栈,位置x的数弹出的时候,在另一个栈中找到和这个数一样大的数,计算贡献(x-靠右左端点)*(i-x). #include<iostream> #include ...

  2. Dynamic Rankings——带修改区间第k大

    三种做法:1.整体二分: 二分mid 考虑小于mid的修改的影响 但是大于mid的修改可能会干掉小于mid的一些值 所以额外把一个修改变成一个值的删除和一个值的添加 这样就相互独立了! 整体二分,树状 ...

  3. Codeforces Round #341 (Div. 2)A

    A. Wet Shark and Odd and Even time limit per test 2 seconds memory limit per test 256 megabytes inpu ...

  4. Mabatis(2) 全局配置文件

    <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE configuration PUBLIC & ...

  5. 利用枚举算法实现todoList:把对应项添加的内容列表

    功能: 点击城市列表项,如果内容列表不存在,则插入点击项: 如果内容列表中已存在,则不插入,然后把内容列表中的对应项放到第一位. HTML代码: <!DOCTYPE html> <h ...

  6. (转) jsp学习笔记

    fromhttp://www.cnblogs.com/tao975/p/4445070.html 什么是JSP JSP的优势 JSP的劣势 JSP与PHP的比较 JSP工作原理 JSP的九大内置对象 ...

  7. 2015/9/4 Python基础(8):映射和集合类型

    Python里唯一的映射类型是字典.映射类型对象里,hash值(key)和指向的对象(值)是一对多的关系.字典对象是可变的,这一点上很像列表,它也可以存储任意个数任意类型的Python对象,其中包括容 ...

  8. C11简洁之道:lambda表达式

    1.  定义 lambda表达式是C++11非常重要也是很常用的特性之一,来源于函数式编程的概念,也是现代编程语言的一个特点.它有如下特点: 声明式编程风格:就地匿名定义目标函数或者函数,不需要额外写 ...

  9. 【BZOJ4514】【SDOI2016】数字配对 [费用流]

    数字配对 Time Limit: 10 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 有 n 种数字,第 i 种数字是 ...

  10. python初步学习-python运算符

    算数运算符 操作 描述 例子 + 加法-对操作符的两侧增加值 a+b=30 - 减法 a-b=30 * 乘法 a * b = 30 / 除法 a/b=30 % 模(取余) a%b=30 ** 指数(幂 ...