洛谷P3197 HNOI2008 越狱
实际上昨天大鸡哥已经讲过这题了,结果没记住,今天一道相似的题就挂了。。。。。。吃一堑长一智啊。
思路大致是这样:如果直接算发生越狱的情况会比较复杂,所以可以用间接法,用安排的总方案-不会发生越狱的方案就可以了。安排的总方案数很显然就是m^n,那么只需要求不会发生越狱的方案数就可以了。分析一下,首先在第一个房间安排一种宗教,那么还剩下m-1种宗教,n-1个房间,因为要与第一个房间不同,则第二个房间就有m-1种安排法,以此类推,第三个房间,第四个以及后面所有房间都是m-1种安排法,所以总的安排法就是m*(m-1)^(n-1)。最终答案就是m^n-m*(m-1)^(n-1),只要再注意取模就OK了。
代码如下:
//It is made by HolseLee on 24th Feb 2018
//Luogu.org P3197
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int mod=;
ll n,m,ans;
inline ll get(ll a,ll b)
{
ll sum=;
while(b){
if(b&)sum=(sum*a)%mod;
a=a*a%mod;b>>=;}
return sum;
}
int main()
{
scanf("%lld%lld",&m,&n);
ans=((get(m,n)%mod)-(m%mod*get(m-,n-)%mod)%mod)%mod;
if(ans<)ans+=mod;
printf("%lld",ans);
return ;
}
洛谷P3197 HNOI2008 越狱的更多相关文章
- 洛谷 P3197 [HNOI2008]越狱 解题报告
P3197 [HNOI2008]越狱 题目描述 监狱有连续编号为\(1-N\)的\(N\)个房间,每个房间关押一个犯人,有\(M\)种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可 ...
- 洛谷 P3197 [HNOI2008]越狱 题解
P3197 [HNOI2008]越狱 题目描述 监狱有连续编号为 \(1-N\) 的 \(N\) 个房间,每个房间关押一个犯人,有 \(M\) 种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗 ...
- 【洛谷P3197】越狱
本来还想了一会dp-- 然而一看数据范围明显是数论-- 那么推一推.. 我们发现可以用总方案数减去不会越狱的方案数 那么我们考虑在长度为n的数列中填数 首先第一个位置有m种选择,后面的位置: 总方案: ...
- bzoj1008 / P3197 [HNOI2008]越狱
P3197 [HNOI2008]越狱 考虑所有状况:显然是$m^{n}$ 考虑所有不合法状况: 显然相邻两个数不相等 那么后面$n-1$个数就有$(m-1)^{n-1}$种取法 第一个数前面没有相邻的 ...
- 洛谷3197&bzoj1008 越狱
洛谷3197&bzoj1008 越狱 Luogu bzoj 题解 所有状态减合法状态.SBT 答案为\(m^n-m*(m-1)^{n-1}\)太SB不解释 注意取膜的问题.相减可能减出负数,而 ...
- 斜率优化dp学习笔记 洛谷P3915[HNOI2008]玩具装箱toy
本文为原创??? 作者写这篇文章的时候刚刚初一毕业…… 如有错误请各位大佬指正 从例题入手 洛谷P3915[HNOI2008]玩具装箱toy Step0:读题 Q:暴力? 如果您学习过dp 不难推出d ...
- P3197 [HNOI2008]越狱[组合数学]
题目来源:洛谷 题目描述 监狱有连续编号为 1…N 的 N 个房间,每个房间关押一个犯人,有 M 种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生 ...
- 洛谷 P3195 [HNOI2008] 玩具装箱
链接: P3195 题意: 给出 \(n\) 个物品及其权值 \(c\),连续的物品可以放进一个容器,如果将 \(i\sim j\) 的物品放进一个容器,产生的费用是 \(\left(j-i+\sum ...
- P3197 [HNOI2008]越狱
题目描述 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱 输入输出格式 输入 ...
随机推荐
- [Luogu 1963] NOI2009 变换序列
[Luogu 1963] NOI2009 变换序列 先%Dalao's Blog 什么?二分图匹配?这个确定可以建图? 「没有建不成图的图论题,只有你想不出的建模方法.」 建图相当玄学,不过理解大约也 ...
- 修改Maven仓库地址
在%USERPROFILE%\.m2\settings.xml例如:C:\Users\LongShu\.m2\settings.xml 可以自定义Maven的一些参数, 复制%M2_HOME%\con ...
- 【NOIP】提高组2015 子串
[题意]求从字符串A中取出k个互不重叠的非空子串顺序拼接形成B的方案数.n<=1000,m<=100,k<=m. [算法]动态规划 [题解]这题主要是将从i-l转移变成从i-1转移, ...
- 代码回滚:Reset、Checkout、Revert 的选择
git reset.git checkout 和 git revert 是你的 Git 工具箱中最有用的一些命令.它们都用来撤销代码仓库中的某些更改,而前两个命令不仅可以作用于提交,还可以作用于特定文 ...
- Java 中的成员内部类
内部类中最常见的就是成员内部类,也称为普通内部类.我们来看如下代码: 运行结果为: 从上面的代码中我们可以看到,成员内部类的使用方法: 1. Inner 类定义在 Outer 类的内部,相当于 Out ...
- Python第三方库jieba(中文分词)入门与进阶(官方文档)
jieba "结巴"中文分词:做最好的 Python 中文分词组件 github:https://github.com/fxsjy/jieba 特点 支持三种分词模式: 精确模式, ...
- Perl6 Bailador框架(1):开始
use v6; use Bailador; get '/' => sub { '<h1><center>Hello, World</center></h ...
- Python学习笔记 - day13 - 进程与线程
概述 我们都知道windows是支持多任务的操作系统. 什么叫“多任务”呢?简单地说,就是操作系统可以同时运行多个任务.打个比方,你一边在用浏览器上网,一边在听MP3,一边在用Word赶作业,这就是多 ...
- FastDFS介绍和配置过程
由于网站使用nfs共享方式保存用户上传的图片,附件等资料,然后通过apache下载的方式供用户访问,在网站架构初期,使用这种简单的方式实现了静态资源的读写分离,但随着网站数据量的增加,图片服务器渐渐成 ...
- 15:django 缓存架构
动态网站的一个基本权衡就是他们是动态的,每次一个用户请求一个页面,web服务器进行各种各样的计算-从数据库查询到模板渲染到业务逻辑-从而生成站点访问者看到的页面.从处理开销的角度来看,相比标准的从文件 ...