复现VGG19训练自定义图像分类
1、复现VGG训练自定义图像分类,成功了哈哈。
需要代码工程可联系博主qq号,在左边连接可找到。
核心代码:
# coding:utf-8
import tensorflow as tf
import os
from load_vgg19_model import net os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' def VGG19_image_classifier(X,Y,nn_classes): vgg19_path = "./vgg19_model/imagenet-vgg-verydeep-19.mat"
net_list,mean_pixel,all_layers = net(vgg19_path,X) vgg19_pool5 = net_list[-1]["pool5"] vgg19_pool5_shape = vgg19_pool5.get_shape().as_list() vgg19_pool5_number = vgg19_pool5_shape[1]*vgg19_pool5_shape[2]*vgg19_pool5_shape[3] weights = {
'wd1': tf.Variable(tf.random_normal([vgg19_pool5_number, 4096])),
'wd2': tf.Variable(tf.random_normal([4096, 4096])),
'out': tf.Variable(tf.random_normal([4096, nn_classes]))
} biases = {
'bd1': tf.Variable(tf.zeros([4096])),
'bd2': tf.Variable(tf.zeros([4096])),
'out': tf.Variable(tf.zeros([nn_classes]))
} # 全连接一层
_densel = tf.reshape(vgg19_pool5, [-1, vgg19_pool5_number]) fc6 = tf.add(tf.matmul(_densel,weights["wd1"]),biases["bd1"])
relu6 = tf.nn.relu(fc6) # 全连接二层 fc7 = tf.add(tf.matmul(relu6,weights["wd2"]),biases["bd2"])
relu7 = tf.nn.relu(fc7) # 输出层
fc8 = tf.add(tf.matmul(relu7,weights["out"]),biases["out"]) # out = tf.nn.softmax(fc8)
out = fc8 # 损失函数 loss
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=Y, logits=out)) # 计算交叉熵 # 优化目标 optimizing
optimizing = tf.train.AdamOptimizer(0.0001).minimize(loss) # 使用adam优化器来以0.0001的学习率来进行微调 # 精确度 accuracy
correct_prediction = tf.equal(tf.argmax(Y, 1), tf.argmax(out, 1)) # 判断预测标签和实际标签是否匹配
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) # 想要保存的模型参数,方便加载找到。
tf.add_to_collection("loss", loss)
tf.add_to_collection("out", out)
tf.add_to_collection("accuracy", accuracy)
tf.add_to_collection("optimizing", optimizing) return {
"loss": loss,
"optimizing": optimizing,
"accuracy": accuracy,
"out": out,
"mean_pixel":mean_pixel
}
小批量梯度训练方法如下图,才训练1次达到88%。
复现VGG19训练自定义图像分类的更多相关文章
- 基于Tensorflow + Opencv 实现CNN自定义图像分类
摘要:本篇文章主要通过Tensorflow+Opencv实现CNN自定义图像分类案例,它能解决我们现实论文或实践中的图像分类问题,并与机器学习的图像分类算法进行对比实验. 本文分享自华为云社区< ...
- Tesseract-OCR-v5.0中文识别,训练自定义字库,提高图片的识别效果
1,下载安装Tesseract-OCR 安装,链接地址https://digi.bib.uni-mannheim.de/tesseract/ 2,安装成功 tesseract -v 注意:安装后, ...
- Yolo训练自定义目标检测
Yolo训练自定义目标检测 参考darknet:https://pjreddie.com/darknet/yolo/ 1. 下载darknet 在 https://github.com/pjreddi ...
- [炼丹术]YOLOv5训练自定义数据集
YOLOv5训练自定义数据 一.开始之前的准备工作 克隆 repo 并在Python>=3.6.0环境中安装requirements.txt,包括PyTorch>=1.7.模型和数据集会从 ...
- yolov5训练自定义数据集
yolov5训练自定义数据 step1:参考文献及代码 博客 https://blog.csdn.net/weixin_41868104/article/details/107339535 githu ...
- 利用Tensorflow训练自定义数据
很多正在入门或刚入门TensorFlow机器学习的同学希望能够通过自己指定图片源对模型进行训练,然后识别和分类自己指定的图片.但是,在TensorFlow官方入门教程中,并无明确给出如何把自定义数据输 ...
- tensorflow从训练自定义CNN网络模型到Android端部署tflite
网上有很多关于tensorflow lite在安卓端部署的教程,但是大多只讲如何把训练好的模型部署到安卓端,不讲如何训练,而实际上在部署的时候,需要知道训练模型时预处理的细节,这就导致了自己训练的模型 ...
- MMDetection 快速开始,训练自定义数据集
本文将快速引导使用 MMDetection ,记录了实践中需注意的一些问题. 环境准备 基础环境 Nvidia 显卡的主机 Ubuntu 18.04 系统安装,可见 制作 USB 启动盘,及系统安装 ...
- Scaled-YOLOv4 快速开始,训练自定义数据集
代码: https://github.com/ikuokuo/start-scaled-yolov4 Scaled-YOLOv4 代码: https://github.com/WongKinYiu/S ...
随机推荐
- iOS开发GCD的简单使用
- (void)viewDidLoad { [super viewDidLoad]; // gcd 可以充分调用设备的 cpu 发挥最大性能,在 C 语言基础之上封装的 // dispatch_que ...
- QT分析之消息事件机制
原文地址:http://blog.163.com/net_worm/blog/static/127702419201001432028526/ 上回我们分析到QPushButton的初始化,知道了Wi ...
- Redis 学习之常用命令及安全机制
该文使用centos6.5 64位 redis3.2.8 一.redis常用命令 键值常用命令: 1. keys 返回满足pattern的所有key. 127.0.0.1:6379> ke ...
- [剑指Offer] 66.机器人的运动范围
题目描述 地上有一个m行和n列的方格.一个机器人从坐标0,0的格子开始移动,每一次只能向左,右,上,下四个方向移动一格,但是不能进入行坐标和列坐标的数位之和大于k的格子. 例如,当k为18时,机器人能 ...
- NOI 97 (Vijos 1464)积木游戏(DP)
很普通的DP,设dp[i][j][k]为第i块积木放在第j堆且摆放状态为k的最高高度.方程很容易推出. # include <cstdio> # include <cstring&g ...
- 【bzoj1096】[ZJOI2007]仓库建设 斜率优化dp
题目描述 L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L ...
- ictclas4j 分词工具包 安装流程
首先把 ictclasj解压缩,然后 1.把 Data文件夹整个拷贝到 Eclipse项目的文件夹下, 2.而 bin目录下的 org文件夹整个拷贝到你 Eclipse项目的 bin目录下,(将cla ...
- A表数据插入到B表(表结构不一致)
D_A 有E\F\H 3字段 D_B 有 A\B\C\D\E\ID 字段 将 D_B 个别字段插入到D_A 表 INSERT INTO D_A(E,F,H) select B,A,ID from ...
- [NOI2009]管道取珠 DP + 递推
---题面--- 思路: 主要难点在思路的转化, 不能看见要求$\sum{a[i]^2}$就想着求a[i], 我们可以对其进行某种意义上的拆分,即a[i]实际上可以代表什么? 假设我们现在有两种取出某 ...
- POJ2079:Triangle——题解
http://poj.org/problem?id=2079 题目大意:求最大面积的三角形. —————————————————— 可以知道,最大面积的三角形的顶点一定是最大凸包的顶点. 接下来就是O ...