1.reduceByKey(func)

功能:

  使用 func 函数合并具有相同键的值。

示例:

val list = List("hadoop","spark","hive","spark")
val rdd = sc.parallelize(list)
val pairRdd = rdd.map((_,1))
pairRdd.reduceByKey(_+_).collect.foreach(println)

上例中,我们先是建立了一个list,然后建立通过这个list集合建立一个rdd

然后我们通过map函数将list的rdd转化成键值对形式的rdd

然后我们通过reduceByKey方法对具有相同key的值进行func(_+_)的累加操作。

输入结果如下

(hive,1)
(spark,2)
(hadoop,1)
list: List[String] = List(hadoop, spark, hive, spark)
rdd: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[127] at parallelize at command-3434610298353610:2
pairRdd: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[128] at map at command-3434610298353610:3 
pairRdd.collect.foreach(println) //打印pairRdd
(hive,1)
(spark,1)
(hadoop,1)
(spark,1)

我们需要留意的事情是,我们调用了reduceByKey操作的返回的结果类型是

org.apache.spark.rdd.RDD[(String, Int)]  

注意,我们这里的collect()方法的作用是收集分布在各个worker的数据到driver节点。

如果不使用这个方法,每个worker的数据只在自己本地显示,并不会在driver节点显示。

2.groupByKey()

功能:

  对具有相同key的value进行分组。

示例:

val list = List("hadoop","spark","hive","spark")
val rdd = sc.parallelize(list)
val pairRdd = rdd.map(x => (x,1))
pairRdd.groupByKey().collect.foreach(println)

我们同样是对跟上面同样的pairRdd进行groupByKey()操作

得出的结果为

(hive,CompactBuffer(1))
(spark,CompactBuffer(1, 1))
(hadoop,CompactBuffer(1))
list: List[String] = List(hadoop, spark, hive, spark)
rdd: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[130] at parallelize at command-3434610298353610:2
pairRdd: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[131] at map at command-3434610298353610:3

可以看到,结果并不是把具有相同key值进行相加,而是就简单的进行了分组,生成一个sequence。

其实,我们可以把groupByKey()当作reduceByKey(func)操作的一部分,

reduceByKey(func)先是对rdd进行groupByKey()然后在对每个分组进行func操作。

pairRdd.reduceByKey(_+_).collect.foreach(println)
等同于
pairRdd.groupByKey().map(t => (t._1,t._2.sum)).collect.foreach(println)

我们这里通过groupByKey()后调用map遍历每个分组,然后通过t => (t._1,t._2.sum)对每个分组的值进行累加。

因为groupByKey()操作是把具有相同类型的key收集到一起聚合成一个集合,集合中有个sum方法,对所有元素进行求和。

注意,(k,v)形式的数据,我们可以通过 ._1,._2 来访问键和值,

用占位符表示就是 _._1,_._2,这里前面的两个下划线的含义是不同的,前边下划线是占位符,后边的是访问方式。 

我们记不记得 ._1,._2,._3 是元组的访问方式。我们可以把键值看成二维的元组。

3.reduceByKey(func)和groupByKey()的区别

reduceByKey()对于每个key对应的多个value进行了merge操作,最重要的是它能够先在本地进行merge操作。merge可以通过func自定义。

groupByKey()也是对每个key对应的多个value进行操作,但是只是汇总生成一个sequence,本身不能自定义函数,只能通过额外通过map(func)来实现。

使用reduceByKey()的时候,本地的数据先进行merge然后再传输到不同节点再进行merge,最终得到最终结果。

而使用groupByKey()的时候,并不进行本地的merge,全部数据传出,得到全部数据后才会进行聚合成一个sequence,

groupByKey()传输速度明显慢于reduceByKey()。

虽然groupByKey().map(func)也能实现reduceByKey(func)功能,但是,优先使用reduceByKey(func)

【spark】常用转换操作:reduceByKey和groupByKey的更多相关文章

  1. 【Spark算子】:reduceByKey、groupByKey和combineByKey

    在spark中,reduceByKey.groupByKey和combineByKey这三种算子用的较多,结合使用过程中的体会简单总结: 我的代码实践:https://github.com/wwcom ...

  2. 【spark】常用转换操作:join

    join就表示内连接. 对于内链接,对于给定的两个输入数据集(k,v1)和(k,v2) 根据相同的k进行连接,最终得到(k,(v1,v2))的数据集. 示例 val arr1 = Array((&qu ...

  3. 【spark】常用转换操作:keys 、values和mapValues

    1.keys 功能: 返回所有键值对的key 示例 val list = List("hadoop","spark","hive",&quo ...

  4. 【spark】常用转换操作:sortByKey()和sortBy()

    1.sortByKey() 功能: 返回一个根据键排序的RDD 示例 val list = List(("a",3),("b",2),("c" ...

  5. java实现spark常用算子之ReduceByKey

    import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaPairRDD;import org.apache.spa ...

  6. Spark常用RDD操作总结

    aggregate 函数原型:aggregate(zeroValue, seqOp, combOp) seqOp相当于Map combOp相当于Reduce zeroValue是seqOp每一个par ...

  7. iOS中NSDate常用转换操作整合

    //当前时间格式化, 例:YYYY-MM-dd-EEEE-HH:mm:ss + (NSString *)getCurrentDataWithDateFormate:(NSString *)format ...

  8. 【spark】RDD操作

    RDD操作分为转换操作和行动操作. 对于RDD而言,每一次的转化操作都会产生不同的RDD,供一个操作使用. 我们每次转换得到的RDD是惰性求值的 也就是说,整个转换过程并不是会真正的去计算,而是只记录 ...

  9. Spark常用函数讲解之键值RDD转换

    摘要: RDD:弹性分布式数据集,是一种特殊集合 ‚ 支持多种来源 ‚ 有容错机制 ‚ 可以被缓存 ‚ 支持并行操作,一个RDD代表一个分区里的数据集RDD有两种操作算子:         Trans ...

随机推荐

  1. [ngClass]、[ngStyle]的基本使用(转载)

    1.ngStyle 基本用法 <div [ngStyle]="{'background-color':'green'}"></<div> 判断添加 & ...

  2. mysql-xtrabackup

    使用xtrabackup进行MySQL数据库备份 2013年10月04日 ⁄ MySQL ⁄ 共 11306字 ⁄ 使用xtrabackup进行MySQL数据库备份已关闭评论 ⁄ 被围观 34,116 ...

  3. 设置SVN提交日志必填

    1.打开visualSVN Server2.打开Repositories3.右键需要控制的项目->所有任务->manage hooks...4.选择Hooks tab,点击Pre-comm ...

  4. 28. Implement strStr()(KMP字符串匹配算法)

    Implement strStr(). Return the index of the first occurrence of needle in haystack, or -1 if needle ...

  5. python进阶——进程/线程/协程

    1 python线程 python中Threading模块用于提供线程相关的操作,线程是应用程序中执行的最小单元. #!/usr/bin/env python # -*- coding:utf-8 - ...

  6. wyx20162314实验报告1

    北京电子科技学院BESTI实验报告 课程:程序设计与数据结构 班级: 1623 姓名: 王译潇 学号:20162310 指导教师:娄佳鹏老师.王志强老师 实验日期:2017年3月26号 实验密级: 非 ...

  7. 如何自定义echarts 线性图的选择事件

    最近在做公司的数据大盘,要用到图表显示,echarts研二的时候有用过,我就决定用它了. 这里用到一个可以同时显示多条曲线的line-charts,基本样子如下: 看到这个画红色圈圈的地方了吗??? ...

  8. adplayer移植【转】

    本文转载自:https://blog.csdn.net/qq361294382/article/details/50525412 这两天做madplayer移植,由于是刚装的ubuntu14.04,所 ...

  9. JavaEE之反射

    反射定义简单表述: 对于任意一个(动态的)运行中的类,我们都可以解剖它,获取类中的构造方法,成员变量,成员方法. 类的加载 (1)加载 就是指将class文件读入内存,并为之创建一个Class对象. ...

  10. HDU 1159 Common Subsequence 动态规划

    2017-08-06 15:41:04 writer:pprp 刚开始学dp,集训的讲的很难,但是还是得自己看,从简单到难,慢慢来(如果哪里有错误欢迎各位大佬指正) 题意如下: 给两个字符串,找到其中 ...