Pick定理、欧拉公式和圆的反演
Pick定理、欧拉公式和圆的反演
Tags:高级算法
Pick定理
内容
定点都是整点的多边形,内部整点数为\(innod\),边界整点数\(ednod\),\(S=innod+\frac{ednod}{2}-1\)
证明
把每个整点近似地看成一个圆,那么多边形内部的整点所代表的圆全部被算入
多边形边界上的圆被算了一半
顶点上被算了\(\sum 半圆-外角\),外角和360度,于是\(-1\)
应用
POJ2954 求格点三角形内部点数
欧拉公式
内容
\[V-E+F=2\]
\(V:vertex\) 顶点
\(E:edge\) 边
\(F:Flat\) 面
适用于所有多变形(无论维度)
例如一个长方形:\(4\)个点\(4\)条边,两个面:里面和外面
应用
\(n\)个点做三维凸包,求增量构造法复杂度。
假设\(n\)个点都在凸包上,那么\(V=n\),每个面有三条边,每条边被算了两次,即\(2E=3F\)
通过上面的公式可以得到\(F=2n-4,E=3n-6\)。
增量构造法的复杂度是面数×点数,所以是\(\cal O(n^2)\)级别
圆的反演变换
内容
反演中心为\(O\),反演半径为\(R\),若经过\(O\)的直线经过\(P,P'\),且\(OP*OP'=R^2\),则称\(P\)、\(P'\)关于\(O\)互为反演
性质
- 1.一根过\(O\)的直线的反形是本身
- 2.一根不过\(O\)的直线的反形是一个过\(O\)的圆
- 3.一个过\(O\)的圆的反形是一根不过\(O\)的直线
- 4.一个不过\(O\)的圆的反形是一个和该圆关于\(O\)位似的圆
下面这张图可以粗略解释一下有这么个东西:两种不同颜色的三角形相似,可以证出\(CD\)关于\(E\)的反形为圆

- 5.反演不改变相切关系
应用
1、求平面内与原点四点共圆的三元组个数
Problem Provider:自为风月马前卒
对所有点反演后求三点共线的三元组即可
2、求经过P点并与两给定相离圆外切的圆
参考博客:ACdreamer反演教程、水郁图文、cdsszjj题解、教你尺规画图
Problem Provider:HDU4773 Problem of Apollonius
先将两相离圆关于P反演,然后做反形的公切线,反演回来成为公切圆
TBC...
Pick定理、欧拉公式和圆的反演的更多相关文章
- The Designer (笛卡尔定理+韦达定理 || 圆的反演)
Nowadays, little haha got a problem from his teacher.His teacher wants to design a big logo for the ...
- CF77E Martian Food(圆的反演or 笛卡尔定理+韦达定理)
题面 传送门 这题有两种方法(然而两种我都想不到) 方法一 前置芝士 笛卡尔定理 我们定义一个圆的曲率为\(k=\pm {1\over r}\),其中\(r\)是圆的半径 若在平面上有两两相切,且六个 ...
- 格点多边形面积公式(Pick定理)的一个形象解释(转)
Pick定理:如果一个简单多边形(以下称为“多边形”)的每个顶点都是直角坐标平面上的格点,则称该多边形为格点多边形.若一个面积为S的格点多边形,其边界上有a个格点,内部有b个格点,则S=a/2+b-1 ...
- 【计算几何 05】Pick定理
什么是Pick定理(皮克定理) 来自wiki的介绍: 给定顶点座标均是整点(或正方形格子点)的简单多边形,皮克定理说明了其面积 \(A\)和内部格点数目 \(i\) .边上格点数目 \(b\) 的关系 ...
- HDU 3775 Chain Code ——(Pick定理)
Pick定理运用在整点围城的面积,有以下公式:S围 = S内(线内部的整点个数)+ S线(线上整点的个数)/2 - 1.在这题上,我们可以用叉乘计算S围,题意要求的答案应该是S内+S线.那么我们进行推 ...
- 【POJ】2954 Triangle(pick定理)
http://poj.org/problem?id=2954 表示我交了20+次... 为什么呢?因为多组数据我是这样判断的:da=sum{a[i].x+a[i].y},然后!da就表示没有数据了QA ...
- UVa 10088 - Trees on My Island (pick定理)
样例: 输入:123 16 39 28 49 69 98 96 55 84 43 51 3121000 10002000 10004000 20006000 10008000 30008000 800 ...
- 圆的反演变换(HDU4773)
题意:给出两个相离的圆O1,O2和圆外一点P,求构造这样的圆:同时与两个圆相外切,且经过点P,输出圆的圆心和半径 分析:画图很容易看出这样的圆要么存在一个,要么存在两个:此题直接解方程是不容易的,先看 ...
- Area(Pick定理POJ1256)
Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5429 Accepted: 2436 Description ...
随机推荐
- 【Redis】Redis学习(七) Redis 持久化之RDB和AOF
Redis 持久化提供了多种不同级别的持久化方式:一种是RDB,另一种是AOF. RDB 持久化可以在指定的时间间隔内生成数据集的时间点快照(point-in-time snapshot). AOF ...
- Expo大作战(三)--针对已经开发过react native项目开发人员有针对性的介绍了expo,expo的局限性,开发时项目选型注意点等
简要:本系列文章讲会对expo进行全面的介绍,本人从2017年6月份接触expo以来,对expo的研究断断续续,一路走来将近10个月,废话不多说,接下来你看到内容,讲全部来与官网 我猜去全部机翻+个人 ...
- React Native 如何做轮播图 react-native-swiper
//:仿饿了么github:https://github.com/stoneWeb/elm-react-native 欢迎各位同学加入: React-Native群:397885169 大前端群:54 ...
- 【第三组】心·迹 Alpha版本 成果汇报
GITHUB地址 https://github.com/shirley-wu/HeartTrace 目录 项目简介 成果概要 详细展示(多图预警) 代码结构及技术难点 问题与规划 1. 项目简介 心· ...
- Prometheus Node_exporter 之 Network Netstat UDP
Network Netstat UDP /proc/net/snmp 1. UDP In / Out type: GraphUnit: shortLabel: Datagrams out (-) / ...
- zabbix agent 3.4 安装指南
从官方网站www.zabbix.com 下载zabbix agent安装包.目前最新版本是4.0 LTS release. 在需要监控的服务器上安装zabbix agent. 先解压安装包. 配置 c ...
- python基础学习7----编码与解码
一.python2 python2中默认以ASCII编码 str='hello world' gbk_to_unicode=str.decode('gbk')#将gbk解码为unicode print ...
- Java 的布局管理器GridBagLayout的使用方法【图文说明】
https://www.cnblogs.com/taoweiji/archive/2012/12/14/2818787.html GridBagLayout是java里面最重要的布局管理器之一,可以做 ...
- 大数据开发实战:HDFS和MapReduce优缺点分析
一. HDFS和MapReduce优缺点 1.HDFS的优势 HDFS的英文全称是 Hadoop Distributed File System,即Hadoop分布式文件系统,它是Hadoop的核心子 ...
- 另开一篇 https
https 流程 1.加密传输:对称加密传输信息 2.身份认证:非对称加密.通过证书来保障客户端给服务器的密钥唯一性. 因为中间层要是伪装公钥和证书,但是又无法解密原有的发送的数据,那么发给服务器的数 ...