[JZOJ 5402] God Knows


终于搞完了这乡里别题目
$
$
考虑一个 \(dp\) ,设 \(f[i]\) 表示最后一个匹配选 \((i,p[i])\) 的最小费用
首先我们考虑答案长什么样
假设根据 \(p[i]\) 排序 ,那么答案肯定是一些以 \(p[]\) 为下标的区间的费用的总和
如果 \(j\) 能够转移到 \(i\) ,那么 \(j\) 一定处于一个基于原数组下标递减的单调序列中,这个我们可以用一个单调栈维护
这个单调栈要使得栈中的最小值尽量小并且费用尽量小
所以我们就是要对于每一个 \(i\) 求出一个 \(j\) 使得:
- \(p[j]<p[i]\);
- \(j\) 处于 \(i\) 左侧的一个单调栈中;
- \(f[j]\) 最小;
$
$
那么这个东西要怎么处理?
这里上一波套路,线段树维护单调栈(相似题:[BZOJ2957] 楼房重建)
以 \(p[]\) 为线段树下标,在线段树的每个区间维护一个单调栈,并在节点记录了两个东西:\(mj\),\(val\)(初值为 \(inf\))
- \(val\) 为该区间的最小费用;
- \(mj\) 为该区间的最大原数组下标;
对于一个 \(i\) ,\(f[i]\) 的初值为 \(c[i]\),如果 \(p[i]\) 大于当前记录的最小 \(p[]\) 的值 ,那么就用区间 \([1,p[i]]\) 的 \(val\) 来更新 \(f[i]\)
然后将新的 \((i,f[i])\) 插入 \(p[i]\) 节点来更新线段树以及单调栈
举个栗子(样例):
\(Minp=inf\);
\(i=1,p[i]=3,f[i]=3,Minp=3\)
线段树叶子节点中存的原数组下标:\(\{inf,inf,1,inf,inf\}\)
\(i=2,p[i]=1,f[i]=4,Minp=1\)
线段树叶子节点中存的原数组下标:\(\{2,inf,1,inf,inf\}\)
节点 \([1,2]\) 的单调栈更新为 \(\{2,1\}\),\(val=4\)
节点 \([1,3]\) 的单调栈更新为 \(\{2,1\}\),\(val=3\)(显然选 \(f[1]\) 会更优)
\(i=3,p[i]=4,f[i]=3,Minp=1\)
这时 \(p[i]>Minp\) 了,并且在 \([1,3]\) 中有单调递减的 \(\{2,1\}\) 可以为 \(f[i]\) 提供贡献,\(f[i]=3+3=6\)
插入 \(f[i]\) 后,节点 \([4,5]\) 中的单调栈更新为\(\{3\}\),\(val=6\),也就是说,\(p[i]>4\)的\(f[i]\)都由\(f[3]\)来转移
$
$
操作是这样,那么具体到底怎么实现呢?
- 首先是\(query\),对于一个区间,右子树的答案一定是可行的(因为节点的答案插入前已经用左边的答案更新过),
但是右子树的答案不一定是最优的(如果我们能在左子树内找到一个匹配\((i,p[i])\),使得 i 大于右子树内的 \(mj\),那么选择这个匹配可能会比右子树的答案更优),所以我们调用这样一个函数 \(calc(x<<1,Max)\),\(Max\)为右子树的 \(mj\),即在左子树内寻找一个更优的解,下面会讲 - 然后是更新(插入)。除了记 \(val\),\(mj\),我们还要记一个东西:\(lv\),表示之前提到的左子树能够提供的所谓更优的解(当然它有可能不是最优解)。显然,\(lv\) 就等于左子树的 \(calc\) 值
- \(calc\)。假设我们 \(calc\) 到一个节点 \(x\),如果它右子树的 \(mj\) 小于了 \(Max\),那么它的右子树对答案肯定是没有贡献的,我么只需要递归左子树;相反,如果它右子树的 \(mj\) 大于 \(Max\),那么它能够提供的贡献就是 \(lv\) 和 右儿子\(calc\)值的 \(min\)
- 然后是统计答案,从后往前统计答案,\(mx\)初值设为\(0\),每次找到一个 \(p[i]>mx\) 就拿\(ans\)和\(f[i]\)取\(min\)
$
$
下面是代码(这东西讲起来真的有点玄学,但代码还是好理解的),这道题确实有点\(SAO\),如果还不理解可以先去做一下[BZOJ2957] 楼房重建,做完应该就理解操作了:
//made by Hero_of_Someone
#include<iostream>
#include<cstdio>
#include<cstdlib>
#define inf (1<<30)
#define N (200010)
#define il inline
#define RG register
using namespace std;
il int gi(){ RG int x=0,q=1; RG char ch=getchar(); while( ( ch<'0' || ch>'9' ) && ch!='-' ) ch=getchar();
if( ch=='-' ) q=-1,ch=getchar(); while(ch>='0' && ch<='9') x=x*10+ch-48,ch=getchar(); return q*x; }
il void File(){freopen("knows.in","r",stdin); freopen("knows.out","w",stdout);}
int n,ans,p[N],c[N],f[N];
struct node{int lv,val,mj;}t[N<<2];
il void init(){
n=gi();
for(int i=1;i<=n;i++) p[i]=gi();
for(int i=1;i<=n;i++) c[i]=gi();
for(int i=1;i<=n<<2;i++) t[i].val=t[i].lv=inf;
}
il int calc(int x,int l,int r,int Max){
if(l==r) return t[x].mj>Max?t[x].val:inf;
int mid=(l+r)>>1;
if(t[x<<1|1].mj<=Max) return calc(x<<1,l,mid,Max);
else return min(t[x].lv,calc(x<<1|1,mid+1,r,Max));
}
il pair<int,int> query(int x,int l,int r,int k){
if(l==r) return make_pair(inf,0);
int mid=(l+r)>>1;
if(k<=mid) return query(x<<1,l,mid,k);
else{
pair<int,int>v=query(x<<1|1,mid+1,r,k);
return make_pair(min(v.first,calc(x<<1,l,mid,v.second)),max(t[x<<1].mj,v.second));
}
}
il void update(int x,int l,int r,int k,int newj,int val){
if(l==r){ t[x].mj=newj,t[x].val=val; return ; }
int mid=(l+r)>>1;
if(k<=mid) update(x<<1,l,mid,k,newj,val);
else update(x<<1|1,mid+1,r,k,newj,val);
t[x].lv=calc(x<<1,l,mid,t[x<<1|1].mj);
t[x].mj=max(t[x<<1].mj,t[x<<1|1].mj);
t[x].val=min(t[x<<1].val,t[x<<1|1].val);
}
il void work(){
int P=inf;
for(int i=1;i<=n;i++){
f[i]=c[i]; P=min(P,p[i]);
if(p[i]>P) f[i]+=query(1,1,n,p[i]).first;
update(1,1,n,p[i],i,f[i]);
}
P=0,ans=inf;
for(int i=n;i;i--) if(p[i]>P) P=p[i],ans=min(ans,f[i]);
printf("%d\n",ans);
}
int main(){ File(); init(); work(); return 0; }
[JZOJ 5402] God Knows的更多相关文章
- hdoj 5402 Travelling Salesman Problem
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5402 类似于黑白棋盘,有的格子是可以不走的,有的格子是不能不走的,对于m或n中有一个奇数的情况, 所有 ...
- (jzoj snow的追寻)线段树维护树的直径
jzoj snow的追寻 DFS序上搞 合并暴力和,记录最长链和当前最远点,距离跑LCA # include <stdio.h> # include <stdlib.h> # ...
- [jzoj]3506.【NOIP2013模拟11.4A组】善良的精灵(fairy)(深度优先生成树)
Link https://jzoj.net/senior/#main/show/3506 Description 从前有一个善良的精灵. 一天,一个年轻人B找到她并请他预言他的未来.这个精灵透过他的水 ...
- [jzoj]3468.【NOIP2013模拟联考7】OSU!(osu)
Link https://jzoj.net/senior/#main/show/3468 Description osu 是一款群众喜闻乐见的休闲软件. 我们可以把osu的规则简化与改编成以下的样子: ...
- [jzoj]5478.【NOIP2017提高组正式赛】列队
Link https://jzoj.net/senior/#main/show/5478 Description Sylvia 是一个热爱学习的女孩子. 前段时间,Sylvia 参加了学校 ...
- [jzoj]1115.【HNOI2008】GT考试
Link https://jzoj.net/senior/#main/show/1115 Description 申准备报名参加GT考试,准考证号为n位数X1X2X3...Xn-1Xn(0<=X ...
- [jzoj]2538.【NOIP2009TG】Hankson 的趣味题
Link https://jzoj.net/senior/#main/show/2538 Description Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫H ...
- [jzoj]4216.【NOIP2015模拟9.12】平方和
Link https://jzoj.net/senior/#main/show/4216 Description 给出一个N个整数构成的序列,有M次操作,每次操作有一下三种: ①Insert Y X, ...
- [jzoj]2938.【NOIP2012模拟8.9】分割田地
Link https://jzoj.net/senior/#main/show/2938 Description 地主某君有一块由2×n个栅格组成的土地,有k个儿子,现在地主快要终老了,要把这些土地分 ...
随机推荐
- 第16章 STM32中断应用概览
第16章 STM32中断应用概览 全套200集视频教程和1000页PDF教程请到秉火论坛下载:www.firebbs.cn 野火视频教程优酷观看网址:http://i.youku.com/fi ...
- EZ 2018 05 01 NOIP2018 模拟赛(十一)
莫名其妙暴涨Rating 其实题目都挺好挺简单的,但是越简单就越容易ZZ 不理解问什么第一题这么多人找环 不过T2是真心细节题,T3太难了 题目戳这里 T1 仔细分析题意发现那个交换规则就是废话,如果 ...
- HTML 表格实例
1.表格这个例子演示如何在 HTML 文档中创建表格. <p>每个表格由 table 标签开始.</p><p>每个表格行由 tr 标签开始.</p>&l ...
- Stm32l151+mpu6050+uart读取数据调试
新近买了一个MPU6050模块,如上图,这个模块上的三块黑色分别是:稳压芯片662K,STM8s003f3p6,MPU6050. 根据此模块的说明书,可以使用USB转TTL将模块与上位机连接,通过卖家 ...
- 《Pro SQL Server Internals, 2nd edition》中CHAPTER 7 Designing and Tuning the Indexes中的Clustered Index Design Considerations一节(译)
<Pro SQL Server Internals> 作者: Dmitri Korotkevitch 出版社: Apress出版年: 2016-12-29页数: 804定价: USD 59 ...
- 【翻译】Brewer's CAP Theorem CAP定理
Brewer's CAP Theorem 原文地址:http://www.julianbrowne.com/article/brewers-cap-theorem Brewer’s (CAP) The ...
- 红黑树插入与删除完整代码(dart语言实现)
之前分析了红黑树的删除,这里附上红黑树的完整版代码,包括查找.插入.删除等.删除后修复实现了两种算法,均比之前的更为简洁.一种是我自己的实现,代码非常简洁,行数更少:一种是Linux.Java等源码版 ...
- A1043 Is It a Binary Search Tree (25 分)
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following propertie ...
- sqlserver-表分区
最近对公司数据库性能方面改造.现已初建成效. 公司原先数据库问题颇多,简单列举下: 1.数据表文档缺失. 2.数据库900多张表,接近一半都是备份和一些报表,没有分库处理 3.大数量的表按照年份人工导 ...
- PAT甲题题解-1054. The Dominant Color (20)-排序/map
原本用map,发现超时了,后来便先用数组存储排个序,最后for一遍统计每种颜色出现的次数(每种颜色的首位索引相减+1),找出最多的即可. #include <iostream> #incl ...