设二次函数$f(x)=ax^2+bx+c(a>0)$,方程$f(x)=x$的两根$x_1,x_2$满足$0<x_1<x_2<\dfrac{1}{a}$,
(Ⅰ)当$x\in(0, x_1)$时,求证:$x<f(x)<x_1$;
(Ⅱ)设函数$f(x)$的图象关于$x=x_0$对称,求证:$x_0<\dfrac{x_1}{2}$


解答:
(1)设$f(x)-x=a(x-x_1)(x-x_2)$,
则$f(x)-x_1=f(x)-x+x-x_1=(x-x_1)[a(x-x_2)+1]=(x-x_1)(ax+1-ax_2)$
由$0<x_1<x_2<\dfrac{1}{a}$,得$f(x)-x>0,f(x)-x_1<0$即证.
(2)由$f(x)-x=a(x-x_1)(x-x_2)$,得$f(x)=ax^2+[1-a(x_1+x_2)]x+ax_1x_2$
故$x_0=\dfrac{a(x_1+x_2)-1}{2a}=\dfrac{ax_1+ax_2-1}{2a}<\dfrac{ax_1}{2a}=\dfrac{x_1}{2}$

评:$f(x)=x$两根法,用一次是技巧,屡试不爽就是方法!

MT【168】还是两根法的更多相关文章

  1. MT【312】特征根法求数列通项

    (2016清华自招领军计划37题改编) 设数列$\{a_n\}$满足$a_1=5,a_2=13,a_{n+2}=\dfrac{a^2_{n+1}+6^n}{a_n}$则下面不正确的是(      )A ...

  2. MT【141】逆用特征根法

    (清华大学THUSSAT) 已知 \(a=\left( \dfrac{-1+\sqrt{5}}{2} \right)^{-10}+\left( \dfrac{-1-\sqrt{5}}{2} \righ ...

  3. poj 3585 Accumulation Degree(二次扫描和换根法)

    Accumulation Degree 大致题意:有一棵流量树,它的每一条边都有一个正流量,树上所有度数为一的节点都是出口,相应的树上每一个节点都有一个权值,它表示从这个节点向其他出口可以输送的最大总 ...

  4. cf219d 基础换根法

    /*树形dp换根法*/ #include<bits/stdc++.h> using namespace std; #define maxn 200005 ]; int root,n,s,t ...

  5. 特征根法求通项+广义Fibonacci数列找循环节 - HDU 5451 Best Solver

    Best Solver Problem's Link Mean: 给出x和M,求:(5+2√6)^(1+2x)的值.x<2^32,M<=46337. analyse: 这题需要用到高中的数 ...

  6. poj3585树最大流——换根法

    题目:http://poj.org/problem?id=3585 二次扫描与换根法,一次dfs求出以某个节点为根的相关值,再dfs遍历一遍树,根据之前的值换根取最大值为答案. 代码如下: #incl ...

  7. 题解 poj3585 Accumulation Degree (树形dp)(二次扫描和换根法)

    写一篇题解,以纪念调了一个小时的经历(就是因为边的数组没有乘2 phhhh QAQ) 题目 题目大意:找一个点使得从这个点出发作为源点,流出的流量最大,输出这个最大的流量. 以这道题来介绍二次扫描和换 ...

  8. 2019-ACM-ICPC-南昌区网络赛-H. The Nth Item-特征根法求通项公式+二次剩余+欧拉降幂

    2019-ACM-ICPC-南昌区网络赛-H. The Nth Item-特征根法求通项公式+二次剩余+欧拉降幂 [Problem Description] ​ 已知\(f(n)=3\cdot f(n ...

  9. POJ - 3585 树上最大流 换根法

    题意:给出一棵树,边上有容量限制,求以任一点作为根和源点,叶子作为汇点的最大流的最大值 首先上网络流等于找死 树形DP可以\(O(n)\)求出以某点\(u\)为根的最大流,只需设\(f[u]=\sum ...

随机推荐

  1. C#中用HttpWebRequest中发送GET/HTTP/HTTPS请求

    C# HttpWebRequest GET HTTP HTTPS 请求  作者:周公(zhoufoxcn)    原文:http://blog.csdn.net/zhoufoxcn 这个需求来自于我最 ...

  2. VS编程,编辑WPF过程中,点击设计器中界面某一控件,在XAML中高亮突出显示相应的控件代码的设置方法。

    原文:VS编程,编辑WPF过程中,点击设计器中界面某一控件,在XAML中高亮突出显示相应的控件代码的设置方法. 版权声明:我不生产代码,我只是代码的搬运工. https://blog.csdn.net ...

  3. adb连接手机的两种方式

    adb连接手机进行调试有两种方式,一种使用USB线,一种使用无线WiFi. 第一种  使用USB线连接 1. 在手机上启用USB调试 2. CMD窗口输入adb devices,此时可以看到自己的设备 ...

  4. Docker GitHub 网站中 Readme.md 以技术者的角度翻译

    Docker 是一个开源的轻量级容器项目,用于让你的应用在它上面打包.集装和运行.Docker 运行的环境既包含未知硬件也包含未知操作系统.这句话的意思是它可以运行在任何地方,小到你的笔记本大到一个大 ...

  5. 架构师修练 I - 超级代码控

    可实现的是架构,空谈是概念 So don't tell me the concepts show me the code!  “不懂编码的架构师不是好架构师” 好架构师都是超级代码控.   代码是最好 ...

  6. ANSYS渡槽槽身动水压力的施加(2)——U型渡槽

    U型渡槽动水压力荷载施加命令及说明 程序中需要用到ANSYS重启动,因为需提取前一步加速度结果以施加部分动水压力: 默认Y方向为重力方向,X方向为横槽向,Z方向为纵槽向: 需准备地震波文件: 需先将槽 ...

  7. cadence allegro 封装原点修改

    打开 dra文件后 在菜单栏 setup - change drawing origin 在命令栏输入 新的参考点位置 如想更改新坐标位置为 1,2 .输入  x 1 2

  8. LAYOUT 注意点

    1:CLK时钟GND全包,可以适当调整布局使包地完整. 2:WIFI天线下层均净空GND 3:过孔尽量不打在焊盘上或距离焊盘太近容易漏锡

  9. App推荐 | Google Tasks

    前不久,Google推出了一款移动任务管理应用Google Task,在使用2天后,写一下使用感受,并与Google同类产品Keep进行一个对比. 首先欣赏几张官方的App截图 然后来看一下官方的介绍 ...

  10. 怎么用JavaScript写一个区块链?

    几乎所有语言都可以编写区块链开发程序.那么如何用JavaScript写一个区块链?以下我将要用JavaScript来创建1个简单的区块链来演示它们的内部到底是怎样工作的.我将会称作SavjeeCoin ...