olivettifaces数据集实现人脸识别代码
数据集:
# -*- coding: utf-8 -*-
"""
Created on Wed Apr 24 18:21:21 2019
@author: 92958
"""
import os
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import matplotlib.patches as patches
import numpy
from PIL import Image
dataset_path='./olivettifaces.gifa'
#获取dataset
def load_data(dataset_path):
img = Image.open(dataset_path)
# 定义一个20 × 20的训练样本,一共有40个人,每个人都10张样本照片
img_ndarray = np.asarray(img, dtype='float64') / 256
#img_ndarray = np.asarray(img, dtype='float32') / 32
# 记录脸数据矩阵,57 * 47为每张脸的像素矩阵
faces = np.empty((400, 57 * 47))
for row in range(20):
for column in range(20):
faces[20 * row + column] = np.ndarray.flatten(
img_ndarray[row * 57: (row + 1) * 57, column * 47 : (column + 1) * 47]
)
label = np.zeros((400, 40))
for i in range(40):
label[i * 10: (i + 1) * 10, i] = 1
# 将数据分成训练集,验证集,测试集
train_data = np.empty((320, 57 * 47))
train_label = np.zeros((320, 40))
vaild_data = np.empty((40, 57 * 47))
vaild_label = np.zeros((40, 40))
test_data = np.empty((40, 57 * 47))
test_label = np.zeros((40, 40))
for i in range(40):
train_data[i * 8: i * 8 + 8] = faces[i * 10: i * 10 + 8]
train_label[i * 8: i * 8 + 8] = label[i * 10: i * 10 + 8]
vaild_data[i] = faces[i * 10 + 8]
vaild_label[i] = label[i * 10 + 8]
test_data[i] = faces[i * 10 + 9]
test_label[i] = label[i * 10 + 9]
train_data = train_data.astype('float32')
vaild_data = vaild_data.astype('float32')
test_data = test_data.astype('float32')
return [
(train_data, train_label),
(vaild_data, vaild_label),
(test_data, test_label)
]
def convolutional_layer(data, kernel_size, bias_size, pooling_size):
kernel = tf.get_variable("conv", kernel_size, initializer=tf.random_normal_initializer())
bias = tf.get_variable('bias', bias_size, initializer=tf.random_normal_initializer())
conv = tf.nn.conv2d(data, kernel, strides=[1, 1, 1, 1], padding='SAME')
linear_output = tf.nn.relu(tf.add(conv, bias))
pooling = tf.nn.max_pool(linear_output, ksize=pooling_size, strides=pooling_size, padding="SAME")
return pooling
def linear_layer(data, weights_size, biases_size):
weights = tf.get_variable("weigths", weights_size, initializer=tf.random_normal_initializer())
biases = tf.get_variable("biases", biases_size, initializer=tf.random_normal_initializer())
return tf.add(tf.matmul(data, weights), biases)
def convolutional_neural_network(data):
# 根据类别个数定义最后输出层的神经元
n_ouput_layer = 40
kernel_shape1=[5, 5, 1, 32]
kernel_shape2=[5, 5, 32, 64]
full_conn_w_shape = [15 * 12 * 64, 1024]
out_w_shape = [1024, n_ouput_layer]
bias_shape1=[32]
bias_shape2=[64]
full_conn_b_shape = [1024]
out_b_shape = [n_ouput_layer]
data = tf.reshape(data, [-1, 57, 47, 1])
# 经过第一层卷积神经网络后,得到的张量shape为:[batch, 29, 24, 32]
with tf.variable_scope("conv_layer1") as layer1:
layer1_output = convolutional_layer(
data=data,
kernel_size=kernel_shape1,
bias_size=bias_shape1,
pooling_size=[1, 2, 2, 1]
)
# 经过第二层卷积神经网络后,得到的张量shape为:[batch, 15, 12, 64]
with tf.variable_scope("conv_layer2") as layer2:
layer2_output = convolutional_layer(
data=layer1_output,
kernel_size=kernel_shape2,
bias_size=bias_shape2,
pooling_size=[1, 2, 2, 1]
)
with tf.variable_scope("full_connection") as full_layer3:
# 讲卷积层张量数据拉成2-D张量只有有一列的列向量
layer2_output_flatten = tf.contrib.layers.flatten(layer2_output)
layer3_output = tf.nn.relu(
linear_layer(
data=layer2_output_flatten,
weights_size=full_conn_w_shape,
biases_size=full_conn_b_shape
)
)
# layer3_output = tf.nn.dropout(layer3_output, 0.8)
with tf.variable_scope("output") as output_layer4:
output = linear_layer(
data=layer3_output,
weights_size=out_w_shape,
biases_size=out_b_shape
)
return output;
def train_facedata(dataset, model_dir,model_path):
# train_set_x = data[0][0]
# train_set_y = data[0][1]
# valid_set_x = data[1][0]
# valid_set_y = data[1][1]
# test_set_x = data[2][0]
# test_set_y = data[2][1]
# X = tf.placeholder(tf.float32, shape=(None, None), name="x-input") # 输入数据
# Y = tf.placeholder(tf.float32, shape=(None, None), name='y-input') # 输入标签
batch_size = 40
# train_set_x, train_set_y = dataset[0]
# valid_set_x, valid_set_y = dataset[1]
# test_set_x, test_set_y = dataset[2]
train_set_x = dataset[0][0]
train_set_y = dataset[0][1]
valid_set_x = dataset[1][0]
valid_set_y = dataset[1][1]
test_set_x = dataset[2][0]
test_set_y = dataset[2][1]
X = tf.placeholder(tf.float32, [batch_size, 57 * 47])
Y = tf.placeholder(tf.float32, [batch_size, 40])
predict = convolutional_neural_network(X)
cost_func = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=predict, labels=Y))
optimizer = tf.train.AdamOptimizer(1e-2).minimize(cost_func)
# 用于保存训练的最佳模型
saver = tf.train.Saver()
#model_dir = './model'
#model_path = model_dir + '/best.ckpt'
with tf.Session() as session:
# 若不存在模型数据,需要训练模型参数
if not os.path.exists(model_path + ".index"):
session.run(tf.global_variables_initializer())
best_loss = float('Inf')
for epoch in range(20):
epoch_loss = 0
for i in range((int)(np.shape(train_set_x)[0] / batch_size)):
x = train_set_x[i * batch_size: (i + 1) * batch_size]
y = train_set_y[i * batch_size: (i + 1) * batch_size]
_, cost = session.run([optimizer, cost_func], feed_dict={X: x, Y: y})
epoch_loss += cost
print(epoch, ' : ', epoch_loss)
if best_loss > epoch_loss:
best_loss = epoch_loss
if not os.path.exists(model_dir):
os.mkdir(model_dir)
print("create the directory: %s" % model_dir)
save_path = saver.save(session, model_path)
print("Model saved in file: %s" % save_path)
# 恢复数据并校验和测试
saver.restore(session, model_path)
correct = tf.equal(tf.argmax(predict,1), tf.argmax(Y,1))
valid_accuracy = tf.reduce_mean(tf.cast(correct,'float'))
print('valid set accuracy: ', valid_accuracy.eval({X: valid_set_x, Y: valid_set_y}))
test_pred = tf.argmax(predict, 1).eval({X: test_set_x})
test_true = np.argmax(test_set_y, 1)
test_correct = correct.eval({X: test_set_x, Y: test_set_y})
incorrect_index = [i for i in range(np.shape(test_correct)[0]) if not test_correct[i]]
for i in incorrect_index:
print('picture person is %i, but mis-predicted as person %i'
%(test_true[i], test_pred[i]))
plot_errordata(incorrect_index, "olivettifaces.gif")
#画出在测试集中错误的数据
def plot_errordata(error_index, dataset_path):
img = mpimg.imread(dataset_path)
plt.imshow(img)
currentAxis = plt.gca()
for index in error_index:
row = index // 2
column = index % 2
currentAxis.add_patch(
patches.Rectangle(
xy=(
47 * 9 if column == 0 else 47 * 19,
row * 57
),
width=47,
height=57,
linewidth=1,
edgecolor='r',
facecolor='none'
)
)
plt.savefig("result.png")
plt.show()
def main():
dataset_path = "olivettifaces.gif"
data = load_data(dataset_path)
model_dir = './model'
model_path = model_dir + '/best.ckpt'
train_facedata(data, model_dir, model_path)
if __name__ == "__main__" :
main()
控制台信息:
runfile('F:/python/TensorFlow/人脸识别/olive1.py', wdir='F:/python/TensorFlow/人脸识别')
WARNING:tensorflow:From C:\Users\92958\Anaconda3\lib\site-packages\tensorflow\python\framework\op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
Instructions for updating:
Colocations handled automatically by placer.
WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0.
For more information, please see:
- https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md
- https://github.com/tensorflow/addons
If you depend on functionality not listed there, please file an issue.
WARNING:tensorflow:From C:\Users\92958\Anaconda3\lib\site-packages\tensorflow\contrib\layers\python\layers\layers.py:1624: flatten (from tensorflow.python.layers.core) is deprecated and will be removed in a future version.
Instructions for updating:
Use keras.layers.flatten instead.
WARNING:tensorflow:From F:/python/TensorFlow/人脸识别/olive1.py:158: softmax_cross_entropy_with_logits (from tensorflow.python.ops.nn_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Future major versions of TensorFlow will allow gradients to flow
into the labels input on backprop by default.
See tf.nn.softmax_cross_entropy_with_logits_v2
.
0 : 2671140.984375
create the directory: ./model
Model saved in file: ./model/best.ckpt
1 : 610905.9375
Model saved in file: ./model/best.ckpt
2 : 181258.35693359375
Model saved in file: ./model/best.ckpt
3 : 54391.228271484375
Model saved in file: ./model/best.ckpt
4 : 24234.38525390625
Model saved in file: ./model/best.ckpt
5 : 9868.018524169922
Model saved in file: ./model/best.ckpt
6 : 3433.5851974487305
Model saved in file: ./model/best.ckpt
7 : 826.4495697021484
Model saved in file: ./model/best.ckpt
8 : 200.12329292297363
Model saved in file: ./model/best.ckpt
9 : 194.84842109680176
Model saved in file: ./model/best.ckpt
10 : 63.74338483810425
Model saved in file: ./model/best.ckpt
11 : 10.006996154785156
Model saved in file: ./model/best.ckpt
12 : 7.118054211139679
Model saved in file: ./model/best.ckpt
13 : 0.0
Model saved in file: ./model/best.ckpt
14 : 0.0
15 : 0.0
16 : 0.0
17 : 0.0
18 : 0.0
19 : 0.0
WARNING:tensorflow:From C:\Users\92958\Anaconda3\lib\site-packages\tensorflow\python\training\saver.py:1266: checkpoint_exists (from tensorflow.python.training.checkpoint_management) is deprecated and will be removed in a future version.
Instructions for updating:
Use standard file APIs to check for files with this prefix.
INFO:tensorflow:Restoring parameters from ./model/best.ckpt
valid set accuracy: 0.8
picture person is 4, but mis-predicted as person 8
picture person is 18, but mis-predicted as person 14
picture person is 21, but mis-predicted as person 27
picture person is 35, but mis-predicted as person 17
原文:https://blog.csdn.net/hanghangaidoudou/article/details/79347080
olivettifaces数据集实现人脸识别代码的更多相关文章
- opencv人脸识别代码
opencv人脸识别C++代码 /* * Copyright (c) 2011,2012. Philipp Wagner <bytefish[at]gmx[dot]de>. * Relea ...
- 百度Aip人脸识别之python代码
用python来做人脸识别代码量少 思路清晰, 在使用之前我们需要在我们的配置的编译器中通过pip install baidu-aip 即可 from aip import AipFace 就可以开 ...
- CNN卷积神经网络人脸识别
图片总共40个人,每人10张图片,每张图片高57,宽47.共400张图片. 读取图片的py文件 import numpyimport pandasfrom PIL import Imagefrom k ...
- 人脸识别FaceNet+TensorFlow
一.本文目标 利用facenet源码实现从摄像头读取视频,实时检测并识别视频中的人脸.换句话说:把facenet源码中contributed目录下的real_time_face_recognition ...
- [译]Kubernetes 分布式应用部署和人脸识别 app 实例
原文地址:KUBERNETES DISTRIBUTED APPLICATION DEPLOYMENT WITH SAMPLE FACE RECOGNITION APP 原文作者:skarlso 译文出 ...
- Python3利用Dlib19.7实现摄像头人脸识别的方法
0.引言 利用python开发,借助Dlib库捕获摄像头中的人脸,提取人脸特征,通过计算欧氏距离来和预存的人脸特征进行对比,达到人脸识别的目的: 可以自动从摄像头中抠取人脸图片存储到本地,然后提取构建 ...
- 「Python」人脸识别应用
人脸识别主要步骤: face_recognition 库的安装 安装此库,首先需要安装编译dlib,此处我们偷个懒,安装软件Anaconda(大牛绕过),此软件预装了dlib. 安装好后,我们直接通过 ...
- 百度人脸识别AI实践.doc
0, 前言 百度开放了很多AI能力,其中人脸识别就是其中之一. 本文对百度人脸识别AI进行实践检验,看看其使用效果如何. 鉴于是最为基础的实践,基本都是在其接口范例代码修改而来. 百度人脸识别AI网站 ...
- python 与 百度人脸识别api
用python来做人脸识别代码量少 思路清晰, 在使用之前我们需要在我们的配置的编译器中通过pip install baidu-aip 即可 from aip import AipFac ...
随机推荐
- 【LeetCode题解】844_比较含退格的字符串(Backspace-String-Compare)
目录 描述 解法一:字符串比较 思路 Java 实现 Python 实现 复杂度分析 解法二:双指针(推荐) 思路 Java 实现 Python 实现 复杂度分析 更多 LeetCode 题解笔记可以 ...
- 搜索过滤Tip : title,site(搜标题和搜网站)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~拿老东家作例子了.........
- ZOJ Problem Set - 3878 Convert QWERTY to Dvorak
题目链接: http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3878 /* 问题 很有意思的一道题目,纯模拟,注意细节和最后一 ...
- React多页面应用脚手架-v1.3.0
react-multi-page-app是一个基于react和webpack的多页面应用架构,通过编译生成对应目录结构清晰的静态页面,实现多页面便捷开发维护.1.3.0 版本对项目整体做了一个全面的升 ...
- ASP.NET MVC提交一个较复杂对象至WCF Service
前一篇<jQuery.Ajax()执行WCF Service的方法>http://www.cnblogs.com/insus/p/3727875.html 我们有练习在asp.net mv ...
- thinkphp save() 跟新失败
一.失败案例 $data = I(); $rs = $this->typeModel->data($data)->save(); 二.正确案例 正确一 $rs=$this->t ...
- 【RabbitMQ】1、RabbitMQ的几种典型使用场景
RabbitMQ主页:https://www.rabbitmq.com/ AMQP AMQP协议是一个高级抽象层消息通信协议,RabbitMQ是AMQP协议的实现.它主要包括以下组件: 1.Serve ...
- VMware设置桥接上网
转自:http://blog.csdn.net/gavin_dinggengjia/article/details/6325904 环境:主机Win7.VMware Workstation 6.5.3 ...
- java基础-面向对象的思想
一.什么是面向对象 面向对象是一种思想,在java中通常我们会说一句话一切事物即对象.而面向对象到底是怎么回事呢?这里我从人们对问题的思考来阐述,人在思考的一个问题的时候比如在解决一个数学问题的时候我 ...
- Linux常用基本命令( rmdir, rm, mv )
1,rmdir,一个很鸡肋的命令,只能删除空目录 ghostwu@dev:~/linux/cp$ ls .txt .txt a a2 a3 ghostwu@dev:~/linux/cp$ rmdir ...