olivettifaces数据集实现人脸识别代码
数据集:
# -*- coding: utf-8 -*-
"""
Created on Wed Apr 24 18:21:21 2019
@author: 92958
"""
import os
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import matplotlib.patches as patches
import numpy
from PIL import Image
dataset_path='./olivettifaces.gifa'
#获取dataset
def load_data(dataset_path):
img = Image.open(dataset_path)
# 定义一个20 × 20的训练样本,一共有40个人,每个人都10张样本照片
img_ndarray = np.asarray(img, dtype='float64') / 256
#img_ndarray = np.asarray(img, dtype='float32') / 32
# 记录脸数据矩阵,57 * 47为每张脸的像素矩阵
faces = np.empty((400, 57 * 47))
for row in range(20):
for column in range(20):
faces[20 * row + column] = np.ndarray.flatten(
img_ndarray[row * 57: (row + 1) * 57, column * 47 : (column + 1) * 47]
)
label = np.zeros((400, 40))
for i in range(40):
label[i * 10: (i + 1) * 10, i] = 1
# 将数据分成训练集,验证集,测试集
train_data = np.empty((320, 57 * 47))
train_label = np.zeros((320, 40))
vaild_data = np.empty((40, 57 * 47))
vaild_label = np.zeros((40, 40))
test_data = np.empty((40, 57 * 47))
test_label = np.zeros((40, 40))
for i in range(40):
train_data[i * 8: i * 8 + 8] = faces[i * 10: i * 10 + 8]
train_label[i * 8: i * 8 + 8] = label[i * 10: i * 10 + 8]
vaild_data[i] = faces[i * 10 + 8]
vaild_label[i] = label[i * 10 + 8]
test_data[i] = faces[i * 10 + 9]
test_label[i] = label[i * 10 + 9]
train_data = train_data.astype('float32')
vaild_data = vaild_data.astype('float32')
test_data = test_data.astype('float32')
return [
(train_data, train_label),
(vaild_data, vaild_label),
(test_data, test_label)
]
def convolutional_layer(data, kernel_size, bias_size, pooling_size):
kernel = tf.get_variable("conv", kernel_size, initializer=tf.random_normal_initializer())
bias = tf.get_variable('bias', bias_size, initializer=tf.random_normal_initializer())
conv = tf.nn.conv2d(data, kernel, strides=[1, 1, 1, 1], padding='SAME')
linear_output = tf.nn.relu(tf.add(conv, bias))
pooling = tf.nn.max_pool(linear_output, ksize=pooling_size, strides=pooling_size, padding="SAME")
return pooling
def linear_layer(data, weights_size, biases_size):
weights = tf.get_variable("weigths", weights_size, initializer=tf.random_normal_initializer())
biases = tf.get_variable("biases", biases_size, initializer=tf.random_normal_initializer())
return tf.add(tf.matmul(data, weights), biases)
def convolutional_neural_network(data):
# 根据类别个数定义最后输出层的神经元
n_ouput_layer = 40
kernel_shape1=[5, 5, 1, 32]
kernel_shape2=[5, 5, 32, 64]
full_conn_w_shape = [15 * 12 * 64, 1024]
out_w_shape = [1024, n_ouput_layer]
bias_shape1=[32]
bias_shape2=[64]
full_conn_b_shape = [1024]
out_b_shape = [n_ouput_layer]
data = tf.reshape(data, [-1, 57, 47, 1])
# 经过第一层卷积神经网络后,得到的张量shape为:[batch, 29, 24, 32]
with tf.variable_scope("conv_layer1") as layer1:
layer1_output = convolutional_layer(
data=data,
kernel_size=kernel_shape1,
bias_size=bias_shape1,
pooling_size=[1, 2, 2, 1]
)
# 经过第二层卷积神经网络后,得到的张量shape为:[batch, 15, 12, 64]
with tf.variable_scope("conv_layer2") as layer2:
layer2_output = convolutional_layer(
data=layer1_output,
kernel_size=kernel_shape2,
bias_size=bias_shape2,
pooling_size=[1, 2, 2, 1]
)
with tf.variable_scope("full_connection") as full_layer3:
# 讲卷积层张量数据拉成2-D张量只有有一列的列向量
layer2_output_flatten = tf.contrib.layers.flatten(layer2_output)
layer3_output = tf.nn.relu(
linear_layer(
data=layer2_output_flatten,
weights_size=full_conn_w_shape,
biases_size=full_conn_b_shape
)
)
# layer3_output = tf.nn.dropout(layer3_output, 0.8)
with tf.variable_scope("output") as output_layer4:
output = linear_layer(
data=layer3_output,
weights_size=out_w_shape,
biases_size=out_b_shape
)
return output;
def train_facedata(dataset, model_dir,model_path):
# train_set_x = data[0][0]
# train_set_y = data[0][1]
# valid_set_x = data[1][0]
# valid_set_y = data[1][1]
# test_set_x = data[2][0]
# test_set_y = data[2][1]
# X = tf.placeholder(tf.float32, shape=(None, None), name="x-input") # 输入数据
# Y = tf.placeholder(tf.float32, shape=(None, None), name='y-input') # 输入标签
batch_size = 40
# train_set_x, train_set_y = dataset[0]
# valid_set_x, valid_set_y = dataset[1]
# test_set_x, test_set_y = dataset[2]
train_set_x = dataset[0][0]
train_set_y = dataset[0][1]
valid_set_x = dataset[1][0]
valid_set_y = dataset[1][1]
test_set_x = dataset[2][0]
test_set_y = dataset[2][1]
X = tf.placeholder(tf.float32, [batch_size, 57 * 47])
Y = tf.placeholder(tf.float32, [batch_size, 40])
predict = convolutional_neural_network(X)
cost_func = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=predict, labels=Y))
optimizer = tf.train.AdamOptimizer(1e-2).minimize(cost_func)
# 用于保存训练的最佳模型
saver = tf.train.Saver()
#model_dir = './model'
#model_path = model_dir + '/best.ckpt'
with tf.Session() as session:
# 若不存在模型数据,需要训练模型参数
if not os.path.exists(model_path + ".index"):
session.run(tf.global_variables_initializer())
best_loss = float('Inf')
for epoch in range(20):
epoch_loss = 0
for i in range((int)(np.shape(train_set_x)[0] / batch_size)):
x = train_set_x[i * batch_size: (i + 1) * batch_size]
y = train_set_y[i * batch_size: (i + 1) * batch_size]
_, cost = session.run([optimizer, cost_func], feed_dict={X: x, Y: y})
epoch_loss += cost
print(epoch, ' : ', epoch_loss)
if best_loss > epoch_loss:
best_loss = epoch_loss
if not os.path.exists(model_dir):
os.mkdir(model_dir)
print("create the directory: %s" % model_dir)
save_path = saver.save(session, model_path)
print("Model saved in file: %s" % save_path)
# 恢复数据并校验和测试
saver.restore(session, model_path)
correct = tf.equal(tf.argmax(predict,1), tf.argmax(Y,1))
valid_accuracy = tf.reduce_mean(tf.cast(correct,'float'))
print('valid set accuracy: ', valid_accuracy.eval({X: valid_set_x, Y: valid_set_y}))
test_pred = tf.argmax(predict, 1).eval({X: test_set_x})
test_true = np.argmax(test_set_y, 1)
test_correct = correct.eval({X: test_set_x, Y: test_set_y})
incorrect_index = [i for i in range(np.shape(test_correct)[0]) if not test_correct[i]]
for i in incorrect_index:
print('picture person is %i, but mis-predicted as person %i'
%(test_true[i], test_pred[i]))
plot_errordata(incorrect_index, "olivettifaces.gif")
#画出在测试集中错误的数据
def plot_errordata(error_index, dataset_path):
img = mpimg.imread(dataset_path)
plt.imshow(img)
currentAxis = plt.gca()
for index in error_index:
row = index // 2
column = index % 2
currentAxis.add_patch(
patches.Rectangle(
xy=(
47 * 9 if column == 0 else 47 * 19,
row * 57
),
width=47,
height=57,
linewidth=1,
edgecolor='r',
facecolor='none'
)
)
plt.savefig("result.png")
plt.show()
def main():
dataset_path = "olivettifaces.gif"
data = load_data(dataset_path)
model_dir = './model'
model_path = model_dir + '/best.ckpt'
train_facedata(data, model_dir, model_path)
if __name__ == "__main__" :
main()
控制台信息:
runfile('F:/python/TensorFlow/人脸识别/olive1.py', wdir='F:/python/TensorFlow/人脸识别')
WARNING:tensorflow:From C:\Users\92958\Anaconda3\lib\site-packages\tensorflow\python\framework\op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
Instructions for updating:
Colocations handled automatically by placer.
WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0.
For more information, please see:
- https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md
- https://github.com/tensorflow/addons
If you depend on functionality not listed there, please file an issue.
WARNING:tensorflow:From C:\Users\92958\Anaconda3\lib\site-packages\tensorflow\contrib\layers\python\layers\layers.py:1624: flatten (from tensorflow.python.layers.core) is deprecated and will be removed in a future version.
Instructions for updating:
Use keras.layers.flatten instead.
WARNING:tensorflow:From F:/python/TensorFlow/人脸识别/olive1.py:158: softmax_cross_entropy_with_logits (from tensorflow.python.ops.nn_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Future major versions of TensorFlow will allow gradients to flow
into the labels input on backprop by default.
See tf.nn.softmax_cross_entropy_with_logits_v2.
0 : 2671140.984375
create the directory: ./model
Model saved in file: ./model/best.ckpt
1 : 610905.9375
Model saved in file: ./model/best.ckpt
2 : 181258.35693359375
Model saved in file: ./model/best.ckpt
3 : 54391.228271484375
Model saved in file: ./model/best.ckpt
4 : 24234.38525390625
Model saved in file: ./model/best.ckpt
5 : 9868.018524169922
Model saved in file: ./model/best.ckpt
6 : 3433.5851974487305
Model saved in file: ./model/best.ckpt
7 : 826.4495697021484
Model saved in file: ./model/best.ckpt
8 : 200.12329292297363
Model saved in file: ./model/best.ckpt
9 : 194.84842109680176
Model saved in file: ./model/best.ckpt
10 : 63.74338483810425
Model saved in file: ./model/best.ckpt
11 : 10.006996154785156
Model saved in file: ./model/best.ckpt
12 : 7.118054211139679
Model saved in file: ./model/best.ckpt
13 : 0.0
Model saved in file: ./model/best.ckpt
14 : 0.0
15 : 0.0
16 : 0.0
17 : 0.0
18 : 0.0
19 : 0.0
WARNING:tensorflow:From C:\Users\92958\Anaconda3\lib\site-packages\tensorflow\python\training\saver.py:1266: checkpoint_exists (from tensorflow.python.training.checkpoint_management) is deprecated and will be removed in a future version.
Instructions for updating:
Use standard file APIs to check for files with this prefix.
INFO:tensorflow:Restoring parameters from ./model/best.ckpt
valid set accuracy: 0.8
picture person is 4, but mis-predicted as person 8
picture person is 18, but mis-predicted as person 14
picture person is 21, but mis-predicted as person 27
picture person is 35, but mis-predicted as person 17

原文:https://blog.csdn.net/hanghangaidoudou/article/details/79347080
olivettifaces数据集实现人脸识别代码的更多相关文章
- opencv人脸识别代码
opencv人脸识别C++代码 /* * Copyright (c) 2011,2012. Philipp Wagner <bytefish[at]gmx[dot]de>. * Relea ...
- 百度Aip人脸识别之python代码
用python来做人脸识别代码量少 思路清晰, 在使用之前我们需要在我们的配置的编译器中通过pip install baidu-aip 即可 from aip import AipFace 就可以开 ...
- CNN卷积神经网络人脸识别
图片总共40个人,每人10张图片,每张图片高57,宽47.共400张图片. 读取图片的py文件 import numpyimport pandasfrom PIL import Imagefrom k ...
- 人脸识别FaceNet+TensorFlow
一.本文目标 利用facenet源码实现从摄像头读取视频,实时检测并识别视频中的人脸.换句话说:把facenet源码中contributed目录下的real_time_face_recognition ...
- [译]Kubernetes 分布式应用部署和人脸识别 app 实例
原文地址:KUBERNETES DISTRIBUTED APPLICATION DEPLOYMENT WITH SAMPLE FACE RECOGNITION APP 原文作者:skarlso 译文出 ...
- Python3利用Dlib19.7实现摄像头人脸识别的方法
0.引言 利用python开发,借助Dlib库捕获摄像头中的人脸,提取人脸特征,通过计算欧氏距离来和预存的人脸特征进行对比,达到人脸识别的目的: 可以自动从摄像头中抠取人脸图片存储到本地,然后提取构建 ...
- 「Python」人脸识别应用
人脸识别主要步骤: face_recognition 库的安装 安装此库,首先需要安装编译dlib,此处我们偷个懒,安装软件Anaconda(大牛绕过),此软件预装了dlib. 安装好后,我们直接通过 ...
- 百度人脸识别AI实践.doc
0, 前言 百度开放了很多AI能力,其中人脸识别就是其中之一. 本文对百度人脸识别AI进行实践检验,看看其使用效果如何. 鉴于是最为基础的实践,基本都是在其接口范例代码修改而来. 百度人脸识别AI网站 ...
- python 与 百度人脸识别api
用python来做人脸识别代码量少 思路清晰, 在使用之前我们需要在我们的配置的编译器中通过pip install baidu-aip 即可 from aip import AipFac ...
随机推荐
- MyCAT全局序列号-数据库方式
1.MyCat中的全局序列号介绍 在实现分库分表的情况下,数据库自增主键已无法保证自增主键的全局唯一.为此,MyCat 提供了全局 sequence,并且提供了包含本地配置和数据库配置等多种实现方式. ...
- Java - "JUC线程池" 线程状态与拒绝策略源码分析
Java多线程系列--“JUC线程池”04之 线程池原理(三) 本章介绍线程池的生命周期.在"Java多线程系列--“基础篇”01之 基本概念"中,我们介绍过,线程有5种状态:新建 ...
- Android使用AOP
这里不讲aop的概念,网上资料很多,这里只讲如何配置aop和自定义plugin. 1.使用场景 在android中,有些业务是公共的,例如:登录判断.获取权限.网络判断等一些公用的业务逻辑,这些都可以 ...
- SSM整合的配置文件
一.spring-web.xml <?xml version="1.0" encoding="UTF-8"?> <beans xmlns=&q ...
- 在Oracle中实现每日表备份并删除7天前的备份表
不用闪回技术,因为业务想眼睁睁的看到备份表,而不是让DBA搞一通之后,才能看到备份数据表 OK,那好办了,写个存储过程解决你的需求,每天建个新表,把数据备份进去,业务人员可以看到这些每天的备份表 然后 ...
- 洛谷P4198 楼房重建(线段树)
题意 题目链接 Sol 别问我为什么发两遍 就是为了骗访问量 这个题的线段树做法,,妙的很 首先一个显然的结论:位置\(i\)能被看到当且仅当\(\frac{H_k}{k} < \frac{H_ ...
- 【代码笔记】iOS-NSLog的使用
代码: // 在debug模式下输出NSLog,在release模式下不输出NSLog #ifndef __OPTIMIZE__ #define NSLog(...) NSLog(__VA_ARGS_ ...
- 【读书笔记】iOS-网络-负载
负载指的是在服务的请求响应事务中交换的数据.常见的负载格式包括XML,JSON与HTML. 进入与发出的负载数据存在很多形式与大小.比如,有些开发者会使用原生的字符串或是以分隔符分开的数据与Web S ...
- cuda和gcc版本不兼容
gcc8.1和cuda9.0版本不兼容,比较坑. 下面是各版本cuda支持的gcc: 从CUDA 4.1版本开始,现在支持gcc 4.5.gcc 4.6和4.7不受支持. 从CUDA 5.0版本开始, ...
- 国内使用kubeadm部署kubernetes的完整流程
使用阿里云的镜像安装kubeadm和kubectl cat <<EOF > /etc/yum.repos.d/kubernetes.repo [kubernetes] name=Ku ...