1076: [SCOI2008]奖励关

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 1602  Solved: 891
[Submit][Status][Discuss]

Description

  你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关。在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃)。 宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相互独立。也就是说,即使前k-1次系统都抛出宝物1(这种情况是有可能出现的,尽管概率非常小),第k次抛出各个宝物的概率依然均为1/n。

获取第i种宝物将得到Pi分,但并不是每种宝物都是可以随意获取的。第i种宝物有一个前提宝物集合Si。只有当Si中所有宝物都至少吃过一次,才能吃第i种宝物(如果系统抛出了一个目前不能吃的宝物,相当于白白的损失了一次机会)。注意,Pi可以是负数,但如果它是很多高分宝物的前提,损失短期利益而吃掉这个负分宝物将获得更大的长期利益。
假设你采取最优策略,平均情况你一共能在奖励关得到多少分值?

Input

  第一行为两个正整数k和n,即宝物的数量和种类。以下n行分别描述一种宝物,其中第一个整数代表分值,随
后的整数依次代表该宝物的各个前提宝物(各宝物编号为1到n),以0结尾。

Output

  输出一个实数,保留六位小数,即在最优策略下平均情况的得分。

Sample Input

1 2
1 0
2 0

Sample Output

1.500000

HINT

【数据规模】
1<=k<=100,1<=n<=15,分值为[-10^6,10^6]内的整数。

Solution

由于n很小,我们可以考虑状压DP。

如果顺推的话,我们会发现有一个问题,那就是当前遇到某个物品,我选或者不选,怎样才是最优的,这个很难判断。

因此,我们可以考虑记忆化搜索或者逆推,这样就能判断怎样选才是最优的。

逆推写起来比较的简洁。

Code

 #include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <algorithm> using namespace std; #define REP(i, a, b) for (int i = (a), i##_end_ = (b); i <= i##_end_; ++i)
#define DWN(i, a, b) for (int i = (a), i##_end_ = (b); i >= i##_end_; --i)
const int MAXN = , MAXK = ;
int n, k, w[MAXN], state[MAXN];
double f[MAXK][<<MAXN]; int main()
{
scanf("%d %d", &k, &n);
REP(i, , n)
{
scanf("%d", &w[i]);
int x; state[i] = ;
while (~scanf("%d", &x) && x != ) state[i] += (<<(x-));
}
DWN(i, k, )
REP(j, , ((<<n)-))
{
REP(k, , n)
if ((j&state[k]) == state[k]) f[i][j] += max(f[i+][j], f[i+][j|(<<(k-))]+w[k]);
else f[i][j] += f[i+][j];
f[i][j] /= n;
}
printf("%.6lf\n", f[][]);
return ;
}

【bzoj 1076】【SCOI2008】奖励关的更多相关文章

  1. bzoj 1076: [SCOI2008]奖励关

    Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝 ...

  2. ●BZOJ 1076 [SCOI2008]奖励关

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1076题解: 期望dp. (模糊的题意,2333) 题中的:"现在决定不吃的宝物以后 ...

  3. BZOJ.1076.[SCOI2008]奖励关(概率DP 倒推)

    题目链接 BZOJ 洛谷 真的题意不明啊.. \(Description\) 你有k次选择的机会,每次将从n种物品中随机一件给你,你可以选择选或不选.选择它会获得这种物品的价值:选择一件物品前需要先选 ...

  4. BZOJ 1076: [SCOI2008]奖励关(概率+dp)

    首先嘛,看了这么久概率论真的不错啊。看到就知道怎么写(其实也挺容易的= =) 直接数位dp就行了 CODE: #include<cstdio> #include<cstring> ...

  5. BZOJ 1076: [SCOI2008]奖励关 [DP 期望 状压]

    传送门 题意:$n$种宝物,出现$k$次每次一种,每种宝物有价值和吃掉它之前必须要吃掉的宝物的集合,求采取最优策略的期望最大价值 1<=k<=100,1<=n<=15,分值为[ ...

  6. bzoj 1076: [SCOI2008]奖励关【状压dp+概率dp】

    设f[i][s]为前i步,选的礼物集合为s的方案数,然而并不会转移-- 看了hzwer的blog,发现要倒着转移,然后答案就是f[1][0] 妙啊 #include<iostream> # ...

  7. 1076: [SCOI2008]奖励关( dp )

    期望状压dp.... ------------------------------------------------------------------ #include<cstdio> ...

  8. 1076: [SCOI2008]奖励关

    1076: [SCOI2008]奖励关 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2078  Solved: 1118[Submit][Statu ...

  9. 【BZOJ】1076: [SCOI2008]奖励关(状压dp+数学期望)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1076 有时候人蠢还真是蠢.一开始我看不懂期望啊..白书上其实讲得很详细的,什么全概率,全期望(这个压 ...

  10. 【BZOJ】1076 [SCOI2008]奖励关 期望DP+状压DP

    [题意]n种宝物,k关游戏,每关游戏给出一种宝物,可捡可不捡.每种宝物有一个价值(有负数).每个宝物有前提宝物列表,必须在前面的关卡取得列表宝物才能捡起这个宝物,求期望收益.k<=100,n&l ...

随机推荐

  1. sssss

    关于征集参加第五届世界互联网大会“世界互联网领先科技成果发布活动”相关成果的通知 2018年07月24日 08:55:00来源: 中国网信网     [打印] [纠错]     各有关单位/个人: 第 ...

  2. 【DS】排序算法之快速排序(Quick Sort)

    一.算法思想 快速排序,顾名思义,效率比较于其他算法,效率比较高.<算法导论>也专门对其进行讲解.其算法设计使用分治思想,如下: 1)从数组A[p...r]中选择一个元素,将数组划分成两个 ...

  3. [转] Android 性能分析案例

    Android 系统的一个工程师(Romain Guy)针对Falcon Pro  应用,撰写了一个Android性能分析的文章.该文章介绍了如何分析一个应用哪里出现了性能瓶颈,导致该应用使用起来不流 ...

  4. [百度地图] 用于类似 DWZ UI 框架的 百度地图 功能封装类 [MultiZMap.js] 实例源码

    MultiZMap 功能说明 MultiZMap.js 本类方法功能大多使用 prototype 原型 实现,它是 ZMap 的多加载版本,主要用于类似 DWZ 这个 多标签的 UI 的框架: 包含的 ...

  5. Windows bat 学习(高级)

    有一种叫做 Command Processor Extensions 的东西,即命令处理器扩展.他会使命令更加高级,功能更多. 在 cmd 里可以使用 ECHO %CMDEXTVERSION% 查看当 ...

  6. npm 更换阿里镜像

    使用NPM(Node.js包管理工具)安装依赖时速度特别慢,只需要使用–registry参数指定镜像服务器地址, npm install your-need-model --registry=http ...

  7. Javascript - 表达式与语句

    表达式与语句(Expression&Statement) 流程控制语句 1.嵌入式语句 嵌入式即这种语句可以无限嵌套N层.所有嵌入式语句只需要键入首个关键单词,在visual studio里按 ...

  8. 洛谷 P5206: bzoj 5475: LOJ 2983: [WC2019] 数树

    一道技巧性非常强的计数题,历年WC出得最好(同时可能是比较简单)的题目之一. 题目传送门:洛谷P5206. 题意简述: 给定 \(n, y\). 一张图有 \(|V| = n\) 个点.对于两棵树 \ ...

  9. casper Dom的操作

    phantom.casperTest = true; phantom.outputEncoding="utf-8"; var casper = require('casper'). ...

  10. 从TFS 删除工作项

    一.进入命令执行窗口的方式 1.若你的TFS服务器上安装了VS开发工作,可以按以下步骤,进入命令行方式,图如下: 2.若你TFS上没有安装VS开发工作,可以从你的开发机器上的VS安装目录下(一般情况下 ...