第一次学怎么用高斯消元法解抑或方程组,思想其实很简单,方法可以看下面的链接:http://blog.csdn.net/zhuichao001/article/details/5440843

有了这种思想之后,一些简单的翻牌问题也算是有了头绪,还记得之前做一到翻一次牌影响曼哈顿距离为k的点的题,现在看来是有思路,但那个貌似是900个点,不好搞呀,自己回头再想想吧。。先贴一记水题的代码

#include<iostream>
#include<cstring>
#include<cstdio>
#include<string>
#include<algorithm>
using namespace std; int m[][];
int ans[][];
int eq[][]; void gauss(int a[][])
{
for(int i=;i<;++i){
int k=i;
for(;k<;++k){
if(a[k][i]!=){
break;
}
}
for(int j=;j<=;++j){
swap(a[i][j],a[k][j]);
}
for(int j=;j<;++j){
if(i!=j&&a[j][i]){
for(int k=;k<=;++k){
a[j][k]=a[i][k]^a[j][k];
}
}
}
}
for(int i=;i<;++i){
ans[i/][i%]=eq[i][];
}
} int main()
{
int T;cin>>T;int ca=;
while(T--)
{
memset(eq,,sizeof(eq));
for(int i=;i<;++i){
for(int j=;j<;++j){
scanf("%d",&m[i][j]);
eq[i*+j][]=m[i][j];
eq[i*+j][i*+j]=;
if(j->=) eq[i*+j][i*+j-]=;
if(j+<) eq[i*+j][i*+j+]=;
if(i*+j->=) eq[i*+j][i*+j-]=;
if(i*+j+<=) eq[i*+j][i*+j+]=;
}
}
gauss(eq);
printf("PUZZLE #%d\n",++ca);
for(int i=;i<;++i){
printf("%d",ans[i][]);
for(int j=;j<;++j){
printf(" %d",ans[i][j]);
}
puts("");
}
}
return ;
}

POJ1222 高斯消元法解抑或方程的更多相关文章

  1. (模板)poj2947(高斯消元法解同余方程组)

    题目链接:https://vjudge.net/problem/POJ-2947 题意:转换题意后就是已知m个同余方程,求n个变量. 思路: 值得学习的是这个模板里消元用到lcm的那一块.注意题目输出 ...

  2. POJ 1320 Street Numbers 解佩尔方程

    传送门 Street Numbers Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 2529   Accepted: 140 ...

  3. [NBUT 1224 Happiness Hotel 佩尔方程最小正整数解]连分数法解Pell方程

    题意:求方程x2-Dy2=1的最小正整数解 思路:用连分数法解佩尔方程,关键是找出√d的连分数表示的循环节.具体过程参见:http://m.blog.csdn.net/blog/wh2124335/8 ...

  4. poj1222(高斯消元法解异或方程组+开关问题)

    题目链接:https://vjudge.net/problem/POJ-1222 题意:给定一个5×6的01矩阵,改变一个点的状态时它上下左右包括它自己的状态都会翻转,因为翻转2次等价与没有翻转,那么 ...

  5. 解如下方程(java实现)

    n                              (m=1) f(m,n)=  m                              (n=1) f(m-1,n)+f(m,n-1) ...

  6. 【高斯消元解xor方程】BZOJ1923-[Sdoi2010]外星千足虫

    [题目大意] 有n个数或为奇数或为偶数,现在进行m次操作,每次取出部分求和,告诉你这几次操作选取的数和它们和的奇偶性.如果通过这m次操作能得到所有数的奇偶性,则输出进行到第n次时即可求出答案:否则输出 ...

  7. fzu1704(高斯消元法解异或方程组+高精度输出)

    题目链接:https://vjudge.net/problem/FZU-1704 题意:经典开关问题,求使得灯全0的方案数. 思路:题目保证至少存在一种方案,即方程组一定有解,那么套上高斯消元法的板子 ...

  8. poj2947(高斯消元法解同余方程组)

    题目链接:https://vjudge.net/problem/POJ-2065 题意:题目看着较复杂,实际上就是给了n个同余方程,解n个未知数. 思路:套高斯消元法的模板即可. AC代码: #inc ...

  9. bzoj千题计划105:bzoj3503: [Cqoi2014]和谐矩阵(高斯消元法解异或方程组)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3503 b[i][j] 表示i对j是否有影响 高斯消元解异或方程组 bitset优化 #include ...

随机推荐

  1. 标签控制器,UITabBarController

    注意: 1.tabbar高度不可设置,可通过_tabbar.tabbar.frame设置tabbar的位置 2.tabbar不同页面添加同一个视图后其那面添加的不起作用,只有最后一个才具有所添加的仕途 ...

  2. iOS人机界面指南(翻译)

    本文源自于苹果开发者网站的文章iOS Human Interface Guidelines,内容比较多,此处仅仅是部分笔记.

  3. C# WinForm设置TreeView选中节点

    这里假定只有两级节点,多级方法类似.遍历节点,根据选中节点文本找到要选中的节点.treeView.SelectedNode = selectNode; /// <summary> /// ...

  4. 关于promise对象的笔记

    1.promise对象是ECMAScript6的新特性,很多新的JS框架都有它的实现和应用 2.promise常用于异步调用(ajax)中 3.promise主要用于解决回调函数层层嵌套的写法 4.要 ...

  5. Js 和 PHP 中保留小数点后X位数的方法 toFixed、round、number_format、sprintf

    在 Javacript 中保留小数点后两位数的方法为 toFixed(2),其中的2为保留两位,写多少就保留多少了,满5进1. Javacript例子: var num = 24.54789523; ...

  6. 边界函数Bounding Function(成长函数的上界)

    根据成长函数的定义,猜测    -->break point K restricts maximum possible mh(N) a lot for N>k bounding funct ...

  7. 【面试虐菜】—— Apache知识整理

    Apache性能调优1 Apache 部分:1. 移除不用的模块.2. 使用 mod_disk_cache NOT mod_mem_cache .3. 扁平架构配置mod_disk_cache.4.  ...

  8. Java从入门到精通——调错篇之ORACLE 打开PLSQL时提示ora-01033

    客户Oracle服务器进入PL/SQL Developer时报ora-01033:oracle initializationg or shutdown in progress 错误提示,应用系统无法连 ...

  9. oracle-linux下挂载"移动硬盘" NTFS类型

    环境: ORACLE-LINUX 5.7 全新移动硬盘(未使用过) 移动硬盘空间3T 在默认情况下,Linux系统不支持NTFS分区挂载 1.服务器: A服务器和B服务器为一套ORACLE-RAC,移 ...

  10. SOA Demo

    使用SOA来实现两个数字的相加,不包含验证,仅供练习使用. PDF文档下载地址:http://files.cnblogs.com/chenyongblog/SOA_Demo.pdf 源码下载:http ...