第二章 k近邻

2.1 算法描述

(1)采用测量不同特征值之间的距离进行分类

优点:对异常点不敏感,精度高,无数据输入设定

缺点:空间,计算复杂度高

适合数据:标称与数值

(2)算法的工作原理:

基于已有的带有标签的训练数据,计算出需要预测的数据与每个训练数据之间的距离,找到其中距离最近的k个数据,根据这k数据中数量最多的类来决定测试数据的类别

(3)算法的类别

该算法属于有监督学习,用于分类,因此它的目标变量是离散的

(4)算法的一般流程:

1.收集数据

2.准备数据

3.分析数据

4.测试算法

5.使用算法

2.2算法实现过程

(1)获取数据

  (2)KNN算法

from numpy import *
import operator # this KNN matrix col is 3
# in order to create data
def createDataSet():
group = array([[1.0, 1.1], [1.0, 1.0], [0.0, 0.0], [0.0, 0.1]])
lables = ['A', 'A', 'B', 'B']
return group, lables # main algorithm
def classify0(inx, dataSet, lables, k):
datasetSize = dataSet.shape[0]
diffmat = tile(inx, (datasetSize, 1)) - dataSet
sqdiffmat = diffmat**2
sqDistance = sqdiffmat.sum(axis=1)
distance = sqDistance**0.5
sortedDistance = distance.argsort()
classcount = {}
for i in range(k):
votelabel = lables[sortedDistance[i]]
classcount[votelabel] = classcount.get(votelabel, 0) + 1
sortedclasscount = sorted(classcount.iteritems(), key=operator.itemgetter(1), reverse=True)
return sortedclasscount[0][0] # read the txt data file
def file2matrix(filename):
fr = open(filename)
arraylines = fr.readlines()
numberoflines = len(arraylines)
returnmatrix = zeros((numberoflines, 3)) # you can change the col
clasavector = []
index = 0
for line in arraylines:
line = line.strip()
listformline = line.split('\t')
returnmatrix[index, :] = listformline[0:3] # you should change the col
clasavector.append(int(listformline[-1]))
index += 1
return returnmatrix, clasavector # normalize the data
def autonorm(dataset):
minval = dataset.min(0)
maxval = dataset.max(0)
ranges = maxval - minval
datasetsize = dataset.shape[0]
normdataset = dataset - tile(minval, (datasetsize, 1))
normdataset = normdataset/tile(ranges, (datasetsize, 1))
return normdataset, ranges, minval def datingclasstest(filename):
horatio = 0.1
dataset, lableset = file2matrix(filename)
noramdataset, ranges, minval = autonorm(dataset)
col = dataset.shape[0]
test = int(col*horatio)
errorcount = 0.0
for i in range(col):
classlable = classify0(noramdataset[i, :], noramdataset[test:col, :], lableset[test:col], 3)
if classlable != lableset[i]:
errorcount += 1
error = errorcount / float(col)
print error

  (3)dating应用程序

import KNN
from numpy import * def classifyperson():
returnlist = ['not at all', 'in small doses', 'in large doses']
game = float(raw_input("the percentage of playing video game"))
fly = float(raw_input("the num of the flier mail"))
icecream = float(raw_input("the num of icecream every weak"))
person = array([game, fly, icecream])
dataset,datalable = KNN.file2matrix("F:data/machinelearninginaction/Ch02/datingTestSet2.txt")
normdataset, ranges, minval=KNN.autonorm(dataset)
classifierresult =KNN.classify0((person - minval)/ranges, normdataset, datalable, 3)
print "you will like him %s" % returnlist[classifierresult-1]

  (4)手写识别程序

import KNN
from os import listdir
from numpy import * # change the 32*32 to vector
def image2vertor(filename):
fr = open(filename)
imagevertor = zeros((1, 1024))
for i in range(32):
line = fr.readline()
for j in range(32):
imagevertor[0, i*32+j] = int(line[j])
return imagevertor
testvector = image2vertor("F:data/machinelearninginaction/Ch02/digits/testDigits/0_13.txt") def handwritingtest():
hwlables = [] # record the lable
filename = listdir("F:data/machinelearninginaction/Ch02/digits/trainingDigits/")
filenum = len(filename)
dataset = zeros((filenum, 1024))
for i in range(filenum):
filenamestr = filename[i].split(".")[0]
filelable = int(filenamestr.split('_')[0])
hwlables.append(filelable)
filepath = "F:data/machinelearninginaction/Ch02/digits/trainingDigits/" + filename[i]
data = image2vertor(filepath)
dataset[i, :] = data
testfile = listdir("F:data/machinelearninginaction/Ch02/digits/testDigits/")
testfilenum = len(testfile)
for j in range(testfilenum):
testfilestr = testfile[j].split('.')[0]
testfilelable =int(testfilestr.split('_')[0])
testdilepath = "F:data/machinelearninginaction/Ch02/digits/testDigits/" + testfile[j]
testdata = image2vertor(testdilepath)
classname = KNN.classify0(testdata, dataset, hwlables, 3)
error = 0.0
if classname == testfilelable:
error += 1
print "we think it is %d, the real is %d" % (classname, testfilelable)
print "the num of error is %d " % error
print "the error rate is %f" % (error/float(testfilenum)) handwritingtest()

KNN算法思想与实现的更多相关文章

  1. 机器学习之KNN算法思想及其实现

    从一个例子来直观感受KNN思想 如下图 , 绿色圆要被决定赋予哪个类,是红色三角形还是蓝色四方形?如果K=3,由于红色三角形所占比例为2/3,绿色圆将被赋予红色三角形那个类,如果K=5,由于蓝色四方形 ...

  2. Python 手写数字识别-knn算法应用

    在上一篇博文中,我们对KNN算法思想及流程有了初步的了解,KNN是采用测量不同特征值之间的距离方法进行分类,也就是说对于每个样本数据,需要和训练集中的所有数据进行欧氏距离计算.这里简述KNN算法的特点 ...

  3. 机器学习【三】k-近邻(kNN)算法

    一.kNN算法概述 kNN算法是用来分类的,其依据测量不同特征值之间的距离,其核心思想在于用距离目标最近的k个样本数据的分类来代表目标的分类(这k个样本数据和目标数据最为相似).其精度高,对异常值不敏 ...

  4. KNN算法原理(python代码实现)

    kNN(k-nearest neighbor algorithm)算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性 ...

  5. 【Machine Learning】KNN算法虹膜图片识别

    K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...

  6. 机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理)

    前言: 找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个,如果你的研究方向是机器学习/数据挖掘之类,且又对其非常感兴趣的话,可以考虑考 ...

  7. kNN算法python实现和简单数字识别

    kNN算法 算法优缺点: 优点:精度高.对异常值不敏感.无输入数据假定 缺点:时间复杂度和空间复杂度都很高 适用数据范围:数值型和标称型 算法的思路: KNN算法(全称K最近邻算法),算法的思想很简单 ...

  8. 数据挖掘之KNN算法(C#实现)

    在十大经典数据挖掘算法中,KNN算法算得上是最为简单的一种.该算法是一种惰性学习法(lazy learner),与决策树.朴素贝叶斯这些急切学习法(eager learner)有所区别.惰性学习法仅仅 ...

  9. KNN算法与Kd树

    最近邻法和k-近邻法 下面图片中只有三种豆,有三个豆是未知的种类,如何判定他们的种类? 提供一种思路,即:未知的豆离哪种豆最近就认为未知豆和该豆是同一种类.由此,我们引出最近邻算法的定义:为了判定未知 ...

随机推荐

  1. Linux Debugging(三): C++函数调用的参数传递方法总结(通过gdb+反汇编)

    上一篇文章<Linux Debugging:使用反汇编理解C++程序函数调用栈>没想到能得到那么多人的喜爱,因为那篇文章是以32位的C++普通函数(非类成员函数)为例子写的,因此只是一个特 ...

  2. java线程池ThreadPoolExecutor 如何与 AsyncTask() 组合使用

    简单说下Executors类,提供的一系列创建线程池的方法: 他们都有两个构造方法 1. --------newFixedThreadPool (创建一个定长线程池,可控制线程最大并发数,超出的线程会 ...

  3. python一行写不下,变多行

    python里一行写不下,拆成多行, \和() 两种方法 在一行末尾 加上" \",也就是空格加上\ a= 'sdfaf' \      'test' 注意两个对象都要独立,字符串 ...

  4. OpenCV stereo matching BM 算法

    一直找不到opencv stereo matching的根据和原理出处,下面这个文章贴了个链接,有时间看看: Basically OpenCV provides 2 methods to calcul ...

  5. EBS 可拓展的外部信用风险导入

    DECLARE l_msg_count NUMBER; l_msg_data VARCHAR2(2000); l_return_status VARCHAR2(30); l_cc_hold_comme ...

  6. C语言中的sizeof解析

    1. 定义:sizeof是C/C++中的一个操作符(operator),作用就是返回一个对象或者类型所占的内存字节数.返回 值类型为size_t,在头文件stddef.h中定义.这是一个依赖于编译系统 ...

  7. Orientation Auto Rotation旋转屏幕crash问题(Unity3D开发之十四)

    猴子原创,欢迎转载.转载请注明: 转载自Cocos2Der-CSDN,谢谢! 原文地址: http://blog.csdn.net/cocos2der/article/details/44133127 ...

  8. 框架页面高度自动刷新Javascript脚本

    实现原理:加载index.htm时候,每隔1秒钟自动调用脚本刷新框架页面代码 代码优点:只需要设置index.html框架页面中的脚本,调用加载的子页面中不需要设置任何代码. index.htm代码如 ...

  9. tomcat中的线程问题

    看这篇文章之前,请先阅读: how tomcat works 读书笔记 十一 StandWrapper 上 地址如下: http://blog.csdn.net/dlf123321/article/d ...

  10. 菜鸟玩云计算之十九:Hadoop 2.5.0 HA 集群安装第2章

    菜鸟玩云计算之十九:Hadoop 2.5.0 HA 集群安装第2章 cheungmine, 2014-10-26 在上一章中,我们准备好了计算机和软件.本章开始部署hadoop 高可用集群. 2 部署 ...