「FFT」题单(upd 2019.4.28)
持续更新(last upd 2019.4.28)
ZJOI2014 力
解法
对原式进行转换,然后卷积FFT套上去求解就可以了。
推导过程简洁版:
\[F_i=\sum_{j<i} \frac{q_iq_j}{(i-j)^2}-\sum_{j>i} \frac{q_iq_j}{(i-j)^2}\]
\[E_i=\sum_{j=1}^{i-1}\frac{q_j}{(i-j)^2}-\sum_{j=i+1}^{n}\frac{q_j}{(j-i)^2}\]
\[E_i=\sum^{i-1}_{j=1}q_jf_{i-j}-\sum^n_{j=i+1}q_jf_{j-i}\]
对以上的式子前后分别做FFT就可以了
主程序(大致框架)
int main() {
read(n);
for (int i = 1; i <= n; i ++) {
db x; scanf("%lf", &x);
a[i].x = c[n - i + 1].x = x; b[i].x = d[i].x = 1.0 / sqr(i * 1.0);
}
limit = 1; while (limit <= (n << 1)) limit <<= 1, l ++;
for (int i = 0; i < limit; i ++) r[i] = (r[i >> 1] >> 1) | ((i & 1) << (l - 1));
FFT(a, 1); FFT(b, 1);
for (int i = 0; i < limit; i ++) a[i] = a[i] * b[i];
FFT(a, -1);
FFT(c, 1); FFT(d, 1);
for (int i = 0; i < limit; i ++) c[i] = c[i] * d[i];
FFT(c, -1);
for (int i = 1; i <= n; i ++) printf("%.3lf\n", a[i].x - c[n - i + 1].x);
return 0;
}
「FFT」题单(upd 2019.4.28)的更多相关文章
- 退役前的最后的做题记录upd:2019.04.04
考试考到自闭,每天被吊打. 还有几天可能就要AFO了呢... Luogu3602:Koishi Loves Segments 从左向右,每次删除右端点最大的即可. [HEOI2014]南园满地堆轻絮 ...
- Partition HDU - 4602 (不知道为什么被放在了FFT的题单里)
题目链接:Vjudge 传送门 相当于把nnn个点分隔为若干块,求所有方案中大小为kkk的块数量 我们把大小为kkk的块,即使在同一种分隔方案中的块 单独考虑,它可能出现的位置是在nnn个点的首.尾. ...
- NOI2019退役记 upd:2019.12.1
(我把原来写的东西全部删掉了) AFO. 我退役了,\(\mbox{yyb}\)退役了. 至少,在接下来的日子里,我得投身到文化课,度过快乐的高三生活了. 这两年的\(OI\)生涯给了我很多,让我学会 ...
- 【LOJ】#3051. 「十二省联考 2019」皮配
LOJ#3051. 「十二省联考 2019」皮配 当时我在考场上觉得这题很不可做... 当然,出了考场后再做,我还是没发现学校和城市是可以分开的,导致我还是不会 事实上,若一个城市投靠了某个阵营,学校 ...
- 「CSP-S」2019年第一届Day1游记+题解
「CSP-S」2019年第一届Day1游记+题解 Day 1 7:30 A.M. 8:10 A.M. 8:30 A.M. T1 格雷码 题目 考场经历+思考(正解) 8:50 A.M. T2 括号树 ...
- Note -「多项式」基础模板(FFT/NTT/多模 NTT)光速入门
进阶篇戳这里. 目录 何为「多项式」 基本概念 系数表示法 & 点值表示法 傅里叶(Fourier)变换 概述 前置知识 - 复数 单位根 快速傅里叶正变换(FFT) 快速傅里叶逆变换(I ...
- React + Node 单页应用「二」OAuth 2.0 授权认证 & GitHub 授权实践
关于项目 项目地址 预览地址 记录最近做的一个 demo,前端使用 React,用 React Router 实现前端路由,Koa 2 搭建 API Server, 最后通过 Nginx 做请求转发. ...
- LOJ6003 - 「网络流 24 题」魔术球
原题链接 Description 假设有根柱子,现要按下述规则在这根柱子中依次放入编号为的球. 每次只能在某根柱子的最上面放球. 在同一根柱子中,任何2个相邻球的编号之和为完全平方数. 试设计一个算法 ...
- LOJ6002 - 「网络流 24 题」最小路径覆盖
原题链接 Description 求一个DAG的最小路径覆盖,并输出一种方案. Solution 模板题啦~ Code //「网络流 24 题」最小路径覆盖 #include <cstdio&g ...
随机推荐
- Jinja2用法总结
Jinja2用法总结 一:渲染模版 要渲染一个模板,通过render_template方法即可. @app.route('/about/') def about(): # return rende ...
- 请收好这份NLP热门词汇解读
文章发布于公号[数智物语] (ID:decision_engine),关注公号不错过每一篇干货. 来源 | 微软研究院AI头条 编者按:在过去的一段时间,自然语言处理领域取得了许多重要的进展,Tran ...
- FreeNas搭建踩坑指南(一)
0x00 背景 最近公司的旧群晖服务器Raid6,因为同时坏了两块硬盘存储池损毁,所以领导决定买了Dell R730自己搭NAS,选来选去最后选了FreeNAS,这里记录一些踩过的坑. 0x01 问题 ...
- Git创建本地版本库
什么是版本库呢?版本库又名仓库,英文名repository,你可以简单理解成一个目录,这个目录里面的所有文件都可以被Git管理起来,每个文件的修改.删除,Git都能跟踪,以便任何时刻都可以追踪历史,或 ...
- Android Studio教程01-的工程和目录结构解析
目录 1.主目录 1.1. app目录 1.2.项目资源文件夹res 2. 理解build.gradle文件 2.1. 外部build.gradle 2.2. app文件下的build.gradle ...
- Parcelable 小记
Parcelable 类,接口类,用于数据的序列化封装.常见的Bundle,Intent类都实现了该类. 实现该类需要实现writeToParcel和describeContents方法,最后还需 ...
- docker 集群 zookeeper 碰到 java.net.NoRouteToHostException: Host is unreachable (Host unreachable)
最近在学 zookeeper ,按照 docker 官网的方式集群 zookeeper , 然后发现有路由找不到.最后问题解决了,随手记录下来. 原因是 firewalld 的没有信任 docker ...
- 将CSV文件写入MySQL
先打开CSV文件查看第一行有哪些字段,然后新建数据库,新建表.(若字段内容很多建议类型text,如果设成char后续会报错) 命令如下: load data infile '路径XXXX.csv' i ...
- EF6实现软删除
https://www.jianshu.com/p/c65fbfe16e1a
- 【原】无脑操作:HTML5 + CSS + JavaScript实现比赛排程
1.背景:朋友请帮忙做一个比赛排程软件 2.需求: ① 比赛人数未知,可以通过文本文件读取参赛人员名称: ② 对参赛人员随机分组,一组两人,两两PK,如果是奇数人数,某一个参赛人员成为幸运儿自动晋级: ...