「FFT」题单(upd 2019.4.28)
持续更新(last upd 2019.4.28)
ZJOI2014 力
解法
对原式进行转换,然后卷积FFT套上去求解就可以了。
推导过程简洁版:
\[F_i=\sum_{j<i} \frac{q_iq_j}{(i-j)^2}-\sum_{j>i} \frac{q_iq_j}{(i-j)^2}\]
\[E_i=\sum_{j=1}^{i-1}\frac{q_j}{(i-j)^2}-\sum_{j=i+1}^{n}\frac{q_j}{(j-i)^2}\]
\[E_i=\sum^{i-1}_{j=1}q_jf_{i-j}-\sum^n_{j=i+1}q_jf_{j-i}\]
对以上的式子前后分别做FFT就可以了
主程序(大致框架)
int main() {
read(n);
for (int i = 1; i <= n; i ++) {
db x; scanf("%lf", &x);
a[i].x = c[n - i + 1].x = x; b[i].x = d[i].x = 1.0 / sqr(i * 1.0);
}
limit = 1; while (limit <= (n << 1)) limit <<= 1, l ++;
for (int i = 0; i < limit; i ++) r[i] = (r[i >> 1] >> 1) | ((i & 1) << (l - 1));
FFT(a, 1); FFT(b, 1);
for (int i = 0; i < limit; i ++) a[i] = a[i] * b[i];
FFT(a, -1);
FFT(c, 1); FFT(d, 1);
for (int i = 0; i < limit; i ++) c[i] = c[i] * d[i];
FFT(c, -1);
for (int i = 1; i <= n; i ++) printf("%.3lf\n", a[i].x - c[n - i + 1].x);
return 0;
}
「FFT」题单(upd 2019.4.28)的更多相关文章
- 退役前的最后的做题记录upd:2019.04.04
考试考到自闭,每天被吊打. 还有几天可能就要AFO了呢... Luogu3602:Koishi Loves Segments 从左向右,每次删除右端点最大的即可. [HEOI2014]南园满地堆轻絮 ...
- Partition HDU - 4602 (不知道为什么被放在了FFT的题单里)
题目链接:Vjudge 传送门 相当于把nnn个点分隔为若干块,求所有方案中大小为kkk的块数量 我们把大小为kkk的块,即使在同一种分隔方案中的块 单独考虑,它可能出现的位置是在nnn个点的首.尾. ...
- NOI2019退役记 upd:2019.12.1
(我把原来写的东西全部删掉了) AFO. 我退役了,\(\mbox{yyb}\)退役了. 至少,在接下来的日子里,我得投身到文化课,度过快乐的高三生活了. 这两年的\(OI\)生涯给了我很多,让我学会 ...
- 【LOJ】#3051. 「十二省联考 2019」皮配
LOJ#3051. 「十二省联考 2019」皮配 当时我在考场上觉得这题很不可做... 当然,出了考场后再做,我还是没发现学校和城市是可以分开的,导致我还是不会 事实上,若一个城市投靠了某个阵营,学校 ...
- 「CSP-S」2019年第一届Day1游记+题解
「CSP-S」2019年第一届Day1游记+题解 Day 1 7:30 A.M. 8:10 A.M. 8:30 A.M. T1 格雷码 题目 考场经历+思考(正解) 8:50 A.M. T2 括号树 ...
- Note -「多项式」基础模板(FFT/NTT/多模 NTT)光速入门
进阶篇戳这里. 目录 何为「多项式」 基本概念 系数表示法 & 点值表示法 傅里叶(Fourier)变换 概述 前置知识 - 复数 单位根 快速傅里叶正变换(FFT) 快速傅里叶逆变换(I ...
- React + Node 单页应用「二」OAuth 2.0 授权认证 & GitHub 授权实践
关于项目 项目地址 预览地址 记录最近做的一个 demo,前端使用 React,用 React Router 实现前端路由,Koa 2 搭建 API Server, 最后通过 Nginx 做请求转发. ...
- LOJ6003 - 「网络流 24 题」魔术球
原题链接 Description 假设有根柱子,现要按下述规则在这根柱子中依次放入编号为的球. 每次只能在某根柱子的最上面放球. 在同一根柱子中,任何2个相邻球的编号之和为完全平方数. 试设计一个算法 ...
- LOJ6002 - 「网络流 24 题」最小路径覆盖
原题链接 Description 求一个DAG的最小路径覆盖,并输出一种方案. Solution 模板题啦~ Code //「网络流 24 题」最小路径覆盖 #include <cstdio&g ...
随机推荐
- Where Can I Download Full Installers for WebLogic Server
Where can I download full installers for the different versions of WebLogic Server (WLS)? Full insta ...
- Python笔记-面向对象编程
1.类和实例 面向-对象的三大特点:数据封装.继承和多态 在Python中,所有数据类型都可以视为对象,当然也可以自定义对象.自定义的对象数据类型就是面向对象中的类(Class)的概念. 假设我们要处 ...
- 一起学Android之Intent
本文简述在Android开发中Intent的常见应用,仅供学习分享使用. 什么是Intent? Intent负责对应用中一次操作的动作.动作涉及数据.附加数据进行描述,Android则根据此Inten ...
- Jmeter简单回顾
之前公众号推文一上手就分享如何测接口, 其实忽略了一些概念性的东西, 今天来给大家拾遗补缺, 做个回顾吧. 一. JMeter介绍 jmeter能做什么,来自官网的解释: Ability to loa ...
- C语言字符数组回顾
赋值篇: Part1 错误引例*2: char c6[];//WRONG c6="HELLO";//WRONG char c7[];//WRONG c7[]='H';// ...
- websocket简单实现在线聊天
WebSocket简介与消息推送 B/S架构的系统多使用HTTP协议,HTTP协议的特点: 1 无状态协议2 用于通过 Internet 发送请求消息和响应消息3 使用端口接收和发送消息,默认为80端 ...
- Nginx作为HTTP服务器--Nginx配置图片服务器
首先安装nginx安装环境 nginx是C语言开发,建议在linux上运行,本教程使用Centos6.5作为安装环境. --> gcc 安装nginx需要先将官网下载的源码进行编译,编译依赖 ...
- angularjs兼容thickbox 插件
ThickBox是一个基于JQuery类库的扩展,它能在浏览器界面上显示非常棒的UI框, 它可以显示单图片,多图片,ajax请求内容或链接内容.ThickBox 是用超轻量级的 jQuery 库 编写 ...
- golang 实现HTTP代理和反向代理
正向代理 package main import ( "fmt" "io" "net" "net/http" " ...
- Effective C++ 第0章 explicit构造函数
按照默认规定,只有一个参数的构造函数也定义了一个隐式转换,将该构造函数对应数据类型的数据转换为该类对象,如下面所示: class String { String ( const char* p ); ...