持续更新(last upd 2019.4.28)

ZJOI2014 力

【题目链接】

解法

对原式进行转换,然后卷积FFT套上去求解就可以了。
推导过程简洁版:

\[F_i=\sum_{j<i} \frac{q_iq_j}{(i-j)^2}-\sum_{j>i} \frac{q_iq_j}{(i-j)^2}\]
\[E_i=\sum_{j=1}^{i-1}\frac{q_j}{(i-j)^2}-\sum_{j=i+1}^{n}\frac{q_j}{(j-i)^2}\]
\[E_i=\sum^{i-1}_{j=1}q_jf_{i-j}-\sum^n_{j=i+1}q_jf_{j-i}\]
对以上的式子前后分别做FFT就可以了

主程序(大致框架)

int main() {
    read(n);
    for (int i = 1; i <= n; i ++) {
        db x; scanf("%lf", &x);
        a[i].x = c[n - i + 1].x = x; b[i].x = d[i].x = 1.0 / sqr(i * 1.0);
    }
    limit = 1; while (limit <= (n << 1)) limit <<= 1, l ++;
    for (int i = 0; i < limit; i ++) r[i] = (r[i >> 1] >> 1) | ((i & 1) << (l - 1));
    FFT(a, 1); FFT(b, 1);
    for (int i = 0; i < limit; i ++) a[i] = a[i] * b[i];
    FFT(a, -1);
    FFT(c, 1); FFT(d, 1);
    for (int i = 0; i < limit; i ++) c[i] = c[i] * d[i];
    FFT(c, -1);
    for (int i = 1; i <= n; i ++) printf("%.3lf\n", a[i].x - c[n - i + 1].x);
    return 0;
}

「FFT」题单(upd 2019.4.28)的更多相关文章

  1. 退役前的最后的做题记录upd:2019.04.04

    考试考到自闭,每天被吊打. 还有几天可能就要AFO了呢... Luogu3602:Koishi Loves Segments 从左向右,每次删除右端点最大的即可. [HEOI2014]南园满地堆轻絮 ...

  2. Partition HDU - 4602 (不知道为什么被放在了FFT的题单里)

    题目链接:Vjudge 传送门 相当于把nnn个点分隔为若干块,求所有方案中大小为kkk的块数量 我们把大小为kkk的块,即使在同一种分隔方案中的块 单独考虑,它可能出现的位置是在nnn个点的首.尾. ...

  3. NOI2019退役记 upd:2019.12.1

    (我把原来写的东西全部删掉了) AFO. 我退役了,\(\mbox{yyb}\)退役了. 至少,在接下来的日子里,我得投身到文化课,度过快乐的高三生活了. 这两年的\(OI\)生涯给了我很多,让我学会 ...

  4. 【LOJ】#3051. 「十二省联考 2019」皮配

    LOJ#3051. 「十二省联考 2019」皮配 当时我在考场上觉得这题很不可做... 当然,出了考场后再做,我还是没发现学校和城市是可以分开的,导致我还是不会 事实上,若一个城市投靠了某个阵营,学校 ...

  5. 「CSP-S」2019年第一届Day1游记+题解

    「CSP-S」2019年第一届Day1游记+题解 Day 1 7:30 A.M. 8:10 A.M. 8:30 A.M. T1 格雷码 题目 考场经历+思考(正解) 8:50 A.M. T2 括号树 ...

  6. Note -「多项式」基础模板(FFT/NTT/多模 NTT)光速入门

      进阶篇戳这里. 目录 何为「多项式」 基本概念 系数表示法 & 点值表示法 傅里叶(Fourier)变换 概述 前置知识 - 复数 单位根 快速傅里叶正变换(FFT) 快速傅里叶逆变换(I ...

  7. React + Node 单页应用「二」OAuth 2.0 授权认证 & GitHub 授权实践

    关于项目 项目地址 预览地址 记录最近做的一个 demo,前端使用 React,用 React Router 实现前端路由,Koa 2 搭建 API Server, 最后通过 Nginx 做请求转发. ...

  8. LOJ6003 - 「网络流 24 题」魔术球

    原题链接 Description 假设有根柱子,现要按下述规则在这根柱子中依次放入编号为的球. 每次只能在某根柱子的最上面放球. 在同一根柱子中,任何2个相邻球的编号之和为完全平方数. 试设计一个算法 ...

  9. LOJ6002 - 「网络流 24 题」最小路径覆盖

    原题链接 Description 求一个DAG的最小路径覆盖,并输出一种方案. Solution 模板题啦~ Code //「网络流 24 题」最小路径覆盖 #include <cstdio&g ...

随机推荐

  1. CentOS6.8 安装node.js npm

    环境:CentOS6.8_X64系统 一.到官方下载最新的编译好的安装文件,目前是6.9.4. $>cd /usr/local/src #定位到这个目录,下载的文件会在这个目录#使用wget下载 ...

  2. 一个.Net网站的成长历程

    引言: 时光匆匆,如白驹过隙,又一次来到了这个节点,回首逝去的日子,有收获也有遗憾... 年底的日子总是那么悠闲,趁着这些悠闲的时光,整理一下自己平时在工作中的收获. 之所以取这个标题呢一来是为了让自 ...

  3. java爬虫系列第二讲-爬取最新动作电影《海王》迅雷下载地址

    1. 目标 使用webmagic爬取动作电影列表信息 爬取电影<海王>详细信息[电影名称.电影迅雷下载地址列表] 2. 爬取最新动作片列表 获取电影列表页面数据来源地址 访问http:// ...

  4. oracle学习笔记(三) DCL 数据控制语言与 DDL 数据定义语言

    DCL 数据控制语言 Data control language 之前说过的授权和收权利语句 grant, revoke DDL 数据定义语言 Data define language create ...

  5. php封装生成随机数函数

    随机数函数Random(num,min,max): num:生成的个数 min:最小的数 max:最大的数. <?php //生成随机20个1-80内不重复的随机数 //思路:也没什么思路,就是 ...

  6. Odoo 开源微信小程序商城模块

    详见:http://oejia.net/blog/2018/09/13/oejia_weshop_about.html oejia_weshop Odoo 微信小程序商城模块 oejia_weshop ...

  7. 放下技术,是PM迈出的第一步

    上一篇,我们从项目层面提出了PM的核心能力架构.今天,我想从公司层面,分析一下PM的核心能力架构中的过程能力,这也是PM当下最关心.最真切的痛点. 还记得上一篇我的同事老A吗? 为什么他能在知名外企带 ...

  8. Java设计模式视频讲解

    设计模式(JAVA) 视频网址: http://www.qghkt.com/ 设计模式(JAVA)视频地址: https://ke.qq.com/course/318643?tuin=a508ea62 ...

  9. SQL大全基本语法

    一.基础 1.说明:创建数据库 CREATE DATABASE database-name 2.说明:删除数据库 drop database dbname 3.说明:备份sql server --- ...

  10. VirtualBox Network Config

    Sharing Host VPN with VirtualBox guest After looking for this solution everywhere, I finally found a ...