题目

思路

首先按照\(t\)排序!!!!

首先考虑一个暴力\(dp\)

用\(f[i]\)表示前\(i\)个人到达地点所需要的时间。

那么就有如下的转移

\[f_i = min_{1 \le j \le i}(max(f_j,t_i) + max\{w_{j + 1} ... w_i\} * 2)
\]

这样复杂度是\(o(n^2)\)的

考虑优化上面的\(dp\)

因为已经按照\(t\)从小到大排过序了,所以如果\(w_i \le w_{i + 1}\)那么第\(i\)这个人就一定是和第\(i+1\)个人一起跟优秀。所以就可以把第\(i\)人剔除掉。

用单调栈可以完成上面的工作。

现在就变成了一个\(t\)单调递增,\(w\)单调递减的序列

然后再去看上面的\(dp\),我们可以把它分成两段。

\(if(f_j \le t_i)\)

\[f_i=t_i + max\{w_{j+1}...w_i\} * 2
\]

\(if(f_j > t_i)\)

\[f_i = f_j + max\{w_{j+1}...w_i\} * 2
\]

因为\(w\)数组单减,所以上面的式子\(max\{w_{j+1}...w_i\}\)是肯定是\(w_{j+1}\)。

所以上面的\(dp\)式子可以这样写

\(if(f_j \le t_i)\)

\[f_i=t_i + w_{j+1} * 2
\]

\(if(f_j > t_i)\)

\[f_i = f_j + w_{j+1} * 2
\]

因为\(f\)数组是递增的,所以第一种转移肯定一前一部分,第二种转移是后一部分。可以找到他们的分界点\(p\)

对于\(p\)及\(p\)之前的,因为\(t_i\)固定了,所以只要找到最小的\(w_{j + 1}\)就行了。显然\(w_{p+1}\)最小

对于\(p\)之后的,就是要找最小的\(f_j+w_{j+1}*2\),用线段树维护一下。

代码

/*
* @Author: wxyww
* @Date: 2019-03-24 19:59:19
* @Last Modified time: 2019-03-24 20:43:41
*/
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
#include<ctime>
using namespace std;
typedef long long ll;
const ll INF = 4e9,N = 1000000 + 100;
#define int ll
ll read() {
ll x=0,f=1;char c=getchar();
while(c<'0'||c>'9') {
if(c=='-') f=-1;
c=getchar();
}
while(c>='0'&&c<='9') {
x=x*10+c-'0';
c=getchar();
}
return x*f;
}
int b[N],top,tree[N << 2], f[N];
struct node {
int p,w;
}a[N];
void update(int rt,int l,int r,int pos,int c) {
if(l == r) {
tree[rt] = c;
return;
}
int mid = (l + r) >> 1;
if(pos <= mid) update(rt << 1,l,mid,pos,c);
else update(rt << 1 | 1,mid + 1,r,pos,c);
tree[rt] = min(tree[rt << 1],tree[rt << 1 | 1]);
}
int query(int rt,int l,int r,int L,int R) {
if(L <= l && R >= r) return tree[rt];
int mid = (l + r) >> 1;
int ans = INF;
if(L <= mid) ans = min(ans,query(rt << 1,l,mid,L,R));
if(R > mid) ans = min(ans,query(rt << 1 | 1,mid + 1,r,L,R));
return ans;
}
bool cmp(const node &A,const node &B) {
return A.p < B.p;
}
signed main() {
int n = read();
for(int i = 1;i <= n;++i) a[i].p = read(),a[i].w = read(); sort(a + 1,a + n + 1,cmp); for(int i = 1;i <= n;++i) {
while(a[i].w >= a[b[top]].w && top) top--;
b[++top] = i;
} int p = 0;
for(int i = 1;i <= top;++i) {
while(p < i - 1 && f[p + 1] <= a[b[i]].p) ++p;
f[i] = a[b[i]].p + a[b[p + 1]].w * 2;
if(p + 1 <= i - 1) f[i] = min(f[i],query(1,1,top,p + 1,i - 1));
update(1,1,top,i,f[i] + a[b[i + 1]].w * 2);
}
cout<<f[top];
return 0;
}

noi.ac89A 电梯的更多相关文章

  1. noi.ac #289. 电梯(单调队列)

    题意 题目链接 Sol 傻叉的我以为给出的\(t\)是单调递增的,然后\(100\rightarrow0\) 首先可以按\(t\)排序,那么转移方程为 \(f[i] = min_{j=0}^{i-1} ...

  2. NOI第一天感想&小结

    嘛...中午总算是到了深圳了--在虹桥机场和飞机上和市队大神们一起讨论各种各样奇(sang)葩(bing)的算(ren)法(lei)还是非常开心的,在此再各种膜拜一下尽管没来比赛的FFT大神@陈中瑞 ...

  3. 自己动手C#模拟电梯的运行V1.0

    电梯调度有很多种模式,参见http://www.cnblogs.com/jianyungsun/archive/2011/03/16/1986439.html 1.1先来先服务算法(FCFS) 先来先 ...

  4. 从一道NOI练习题说递推和递归

    一.递推: 所谓递推,简单理解就是推导数列的通项公式.先举一个简单的例子(另一个NOI练习题,但不是这次要解的问题): 楼梯有n(100 > n > 0)阶台阶,上楼时可以一步上1阶,也可 ...

  5. 浮动【电梯】或【回到顶部】小插件:iElevator.js

    iElevator.js 是一个jquery小插件,使用简单,兼容IE6,支持UMD和3种配置方式,比锚点更灵活. Default Options _defaults = { floors: null ...

  6. NOI 动态规划题集

    noi 1996 登山 noi 8780 拦截导弹 noi 4977 怪盗基德的滑翔翼 noi 6045 开餐馆 noi 2718 移动路线 noi 2728 摘花生 noi 2985 数字组合 no ...

  7. noi 6047 分蛋糕

    题目链接:http://noi.openjudge.cn/ch0405/6047/ 和Uva1629很类似,不过,可能用记忆化难写一点,状态初始化懒得搞了.就用循环好了. 状态描叙也可以修改,那个题目 ...

  8. Pair Project: Elevator Scheduler [电梯调度算法的实现和测试] --11061188刘强

    结对编程总结 队员:刘强(11061188) 林谋武(11061169) 结对编程: 结对编程的优点: 1.  两个人合作,相比于一个人自己奋斗而言,更能激发自己的潜能:我们在合作过程中,互相学习,互 ...

  9. 洛谷P1371 NOI元丹

    P1371 NOI元丹 71通过 394提交 题目提供者洛谷OnlineJudge 标签云端评测 难度普及/提高- 提交  讨论  题解 最新讨论 我觉得不需要讨论O long long 不够 没有取 ...

随机推荐

  1. c#调用word文件

    大家好!我叫蓝颜,我是一名大专生.这是我第一次接触博客园,以后也会一直在. 在学校期间,参加技能大赛(物联网),接触到的C#.之后学校教务处要一个调课软件, 于是我就小试牛刀试了试.当然了,这也是我第 ...

  2. Math.floor(Math.random()*3+1)

    Math.random():获取0~1随机数 Math.floor() method rounds a number DOWNWARDS to the nearest integer, and ret ...

  3. 第四次上机,ASP组件的使用

    <html> <body> <% '以下连接数据库,建立一个Connection对象实例conn Set conn=Server.CreateObject("A ...

  4. 移动开发基础-学习笔记二-字体图标、less、bootstrap入门

    1.字体图标 1.字体图标都是用svg图片 1.svg图片不失真 2.svg图标由设计师提供 3.为了减少网络请求,会把svg图标转换成字体图标,放到字体文件中,通过字体库的方式使用 2.制作步骤 1 ...

  5. Testlink插件工具

    目的: 使用Testlink时间长了,会发现有些功能体验不是很好,比如用例编写就无法快速复制,且展示能力很弱 使用对象: 测试人员.测试leader,技术经理 xmind2testlink:xmind ...

  6. <自动化测试方案_9>第九章、持续集成平台搭建

    第九章.持续集成平台搭建 (一)什么是持续集成 参考文章地址:https://blog.csdn.net/qq_32261399/article/details/76651376 敏捷软件开发(英语: ...

  7. kvm热添加和热迁移

    a.热添加磁盘 1.创建磁盘 qemu-img create -f qcow2 web01-add01.qcow2 5G 2.附加磁盘设备 virsh attach-disk web01 /opt/w ...

  8. 自反ACL(第三组)

    一.实验拓扑 二.配置过程 此处我用了学号后两位来划分网段,注意:先把网络做通再配ACL 1)网络连通测试 内网可以telnet外网 ----------- 外网可以telnet内网 2)ACL配置( ...

  9. PVLAN 简介

    PVLAN(Private VLAN),即私有 VLAN.采⽤两层 VLAN 隔离技术,上层VLAN 全局可见,下层VLAN 相互隔离.PVLAN 通常用于企业内部网,用来防止连接到某些接⼝或接口组的 ...

  10. 自定义 js 文件的集成引用

    这里的内容, 提前要知道  import comm from ‘...’  和 import {  comm }  from ‘...’ 的基础知识. 我举个案例, 当你有很多api文件的时候, 比如 ...