题目

思路

首先按照\(t\)排序!!!!

首先考虑一个暴力\(dp\)

用\(f[i]\)表示前\(i\)个人到达地点所需要的时间。

那么就有如下的转移

\[f_i = min_{1 \le j \le i}(max(f_j,t_i) + max\{w_{j + 1} ... w_i\} * 2)
\]

这样复杂度是\(o(n^2)\)的

考虑优化上面的\(dp\)

因为已经按照\(t\)从小到大排过序了,所以如果\(w_i \le w_{i + 1}\)那么第\(i\)这个人就一定是和第\(i+1\)个人一起跟优秀。所以就可以把第\(i\)人剔除掉。

用单调栈可以完成上面的工作。

现在就变成了一个\(t\)单调递增,\(w\)单调递减的序列

然后再去看上面的\(dp\),我们可以把它分成两段。

\(if(f_j \le t_i)\)

\[f_i=t_i + max\{w_{j+1}...w_i\} * 2
\]

\(if(f_j > t_i)\)

\[f_i = f_j + max\{w_{j+1}...w_i\} * 2
\]

因为\(w\)数组单减,所以上面的式子\(max\{w_{j+1}...w_i\}\)是肯定是\(w_{j+1}\)。

所以上面的\(dp\)式子可以这样写

\(if(f_j \le t_i)\)

\[f_i=t_i + w_{j+1} * 2
\]

\(if(f_j > t_i)\)

\[f_i = f_j + w_{j+1} * 2
\]

因为\(f\)数组是递增的,所以第一种转移肯定一前一部分,第二种转移是后一部分。可以找到他们的分界点\(p\)

对于\(p\)及\(p\)之前的,因为\(t_i\)固定了,所以只要找到最小的\(w_{j + 1}\)就行了。显然\(w_{p+1}\)最小

对于\(p\)之后的,就是要找最小的\(f_j+w_{j+1}*2\),用线段树维护一下。

代码

/*
* @Author: wxyww
* @Date: 2019-03-24 19:59:19
* @Last Modified time: 2019-03-24 20:43:41
*/
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
#include<ctime>
using namespace std;
typedef long long ll;
const ll INF = 4e9,N = 1000000 + 100;
#define int ll
ll read() {
ll x=0,f=1;char c=getchar();
while(c<'0'||c>'9') {
if(c=='-') f=-1;
c=getchar();
}
while(c>='0'&&c<='9') {
x=x*10+c-'0';
c=getchar();
}
return x*f;
}
int b[N],top,tree[N << 2], f[N];
struct node {
int p,w;
}a[N];
void update(int rt,int l,int r,int pos,int c) {
if(l == r) {
tree[rt] = c;
return;
}
int mid = (l + r) >> 1;
if(pos <= mid) update(rt << 1,l,mid,pos,c);
else update(rt << 1 | 1,mid + 1,r,pos,c);
tree[rt] = min(tree[rt << 1],tree[rt << 1 | 1]);
}
int query(int rt,int l,int r,int L,int R) {
if(L <= l && R >= r) return tree[rt];
int mid = (l + r) >> 1;
int ans = INF;
if(L <= mid) ans = min(ans,query(rt << 1,l,mid,L,R));
if(R > mid) ans = min(ans,query(rt << 1 | 1,mid + 1,r,L,R));
return ans;
}
bool cmp(const node &A,const node &B) {
return A.p < B.p;
}
signed main() {
int n = read();
for(int i = 1;i <= n;++i) a[i].p = read(),a[i].w = read(); sort(a + 1,a + n + 1,cmp); for(int i = 1;i <= n;++i) {
while(a[i].w >= a[b[top]].w && top) top--;
b[++top] = i;
} int p = 0;
for(int i = 1;i <= top;++i) {
while(p < i - 1 && f[p + 1] <= a[b[i]].p) ++p;
f[i] = a[b[i]].p + a[b[p + 1]].w * 2;
if(p + 1 <= i - 1) f[i] = min(f[i],query(1,1,top,p + 1,i - 1));
update(1,1,top,i,f[i] + a[b[i + 1]].w * 2);
}
cout<<f[top];
return 0;
}

noi.ac89A 电梯的更多相关文章

  1. noi.ac #289. 电梯(单调队列)

    题意 题目链接 Sol 傻叉的我以为给出的\(t\)是单调递增的,然后\(100\rightarrow0\) 首先可以按\(t\)排序,那么转移方程为 \(f[i] = min_{j=0}^{i-1} ...

  2. NOI第一天感想&小结

    嘛...中午总算是到了深圳了--在虹桥机场和飞机上和市队大神们一起讨论各种各样奇(sang)葩(bing)的算(ren)法(lei)还是非常开心的,在此再各种膜拜一下尽管没来比赛的FFT大神@陈中瑞 ...

  3. 自己动手C#模拟电梯的运行V1.0

    电梯调度有很多种模式,参见http://www.cnblogs.com/jianyungsun/archive/2011/03/16/1986439.html 1.1先来先服务算法(FCFS) 先来先 ...

  4. 从一道NOI练习题说递推和递归

    一.递推: 所谓递推,简单理解就是推导数列的通项公式.先举一个简单的例子(另一个NOI练习题,但不是这次要解的问题): 楼梯有n(100 > n > 0)阶台阶,上楼时可以一步上1阶,也可 ...

  5. 浮动【电梯】或【回到顶部】小插件:iElevator.js

    iElevator.js 是一个jquery小插件,使用简单,兼容IE6,支持UMD和3种配置方式,比锚点更灵活. Default Options _defaults = { floors: null ...

  6. NOI 动态规划题集

    noi 1996 登山 noi 8780 拦截导弹 noi 4977 怪盗基德的滑翔翼 noi 6045 开餐馆 noi 2718 移动路线 noi 2728 摘花生 noi 2985 数字组合 no ...

  7. noi 6047 分蛋糕

    题目链接:http://noi.openjudge.cn/ch0405/6047/ 和Uva1629很类似,不过,可能用记忆化难写一点,状态初始化懒得搞了.就用循环好了. 状态描叙也可以修改,那个题目 ...

  8. Pair Project: Elevator Scheduler [电梯调度算法的实现和测试] --11061188刘强

    结对编程总结 队员:刘强(11061188) 林谋武(11061169) 结对编程: 结对编程的优点: 1.  两个人合作,相比于一个人自己奋斗而言,更能激发自己的潜能:我们在合作过程中,互相学习,互 ...

  9. 洛谷P1371 NOI元丹

    P1371 NOI元丹 71通过 394提交 题目提供者洛谷OnlineJudge 标签云端评测 难度普及/提高- 提交  讨论  题解 最新讨论 我觉得不需要讨论O long long 不够 没有取 ...

随机推荐

  1. DevOps概述

    Devops概念 转载自 devops实践-开篇感想 DevOps(英文Development和Operations的组合)是一组过程.方法与系统的统称,用于促进开发(应用程序/软件工程).技术运营和 ...

  2. PHP基础笔记

    今天一个阳光明媚的大周天,小崔百无聊赖的翻看着各种老旧的经典电影,无奈谁让自己是没女朋友的单身狗呢.闲来无事就记录一下PHP的一些基础知识吧! 1.PHP是什么? PHP是一种创建动态交互性站点的服务 ...

  3. Java基础小知识笔记

    1. Integer转进制的一个类2. toBinaryString,toOctalString,toHexString.(转为二进制,八进制,十六进制的方法)3. 如果·数据的大小没有超过byte/ ...

  4. js高德地图手机定位

    <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> <html> <hea ...

  5. 请收好这份NLP热门词汇解读

    文章发布于公号[数智物语] (ID:decision_engine),关注公号不错过每一篇干货. 来源 | 微软研究院AI头条 编者按:在过去的一段时间,自然语言处理领域取得了许多重要的进展,Tran ...

  6. OpenCL洗牌函数shuffle

    在OpenCL中,经常会碰到会对向量的多个分量进行交叉运算的情况,比如 float4 d4; //input float scale; //input float2 mix_0 = mix((floa ...

  7. jqery autocomplete 动态传递参数的问题

    今天弄一个autocomplete 向后后台动态传递参数的问题 老的写法: params: { "saleid": $("#divSalesman input[field ...

  8. 阿里云CentOS安装PostgreSQL

    在PostgreSQL官方文档:https://www.postgresql.org/download/linux/redhat/ 有选项和说明 1.检查有没安装:rpg -ga | grep pos ...

  9. 自研数据库CynosDB存储系统如何实现即时恢复

    本文由云+社区发表 本文作者:许中清,腾讯云自研数据库CynosDB的分布式存储CynosStore负责人.从事数据库内核开发.数据库产品架构和规划.曾就职于华为,2015年加入腾讯,参与过TBase ...

  10. Python encode和decode

    今天在写一个StringIO.write(int)示例时思维那么一发散就拐到了字符集的问题上,顺手搜索一发,除了极少数以外,绝大多数中文博客都解释的惨不忍睹,再鉴于被此问题在oracle的字符集体系中 ...