死活TLE....求助

update 4.3 23:08 求助了tls之后终于过了...分治里次数界写崩了...r-l+1就行...

分治的做法很神奇!本题的限制在于操作类型与权值相对大小有关,而用[l,mid]更新[mid+1,r]正好适应了本题的要求

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N = (1<<17) + 5;
const double PI = acos(-1.0);
inline int read() {
char c=getchar();int x=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
} struct meow{
double x, y;
meow(double x=0, double y=0):x(x), y(y){}
};
meow operator + (meow a, meow b) {return meow(a.x + b.x, a.y + b.y);}
meow operator - (meow a, meow b) {return meow(a.x - b.x, a.y - b.y);}
meow operator * (meow a, meow b) {return meow(a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x);}
meow conj(meow a) {return meow(a.x, -a.y);}
typedef meow cd; namespace fft {
int maxlen = 1<<17, rev[N];
cd omega[N], omegaInv[N];
void init() {
for(int i=0; i<maxlen; i++) {
omega[i] = cd(cos(2*PI/maxlen*i), sin(2*PI/maxlen*i));
omegaInv[i] = conj(omega[i]);
}
}
void dft(cd *a, int n, int flag) {
cd *w = flag == 1 ? omega : omegaInv;
for(int i=0; i<n; i++) if(i < rev[i]) swap(a[i], a[rev[i]]);
for(int l=2; l<=n; l<<=1) {
int m = l>>1;
for(cd *p = a; p != a+n; p += l)
for(int k=0; k<m; k++) {
cd t = w[maxlen/l*k] * p[k+m];
p[k+m] = p[k] - t;
p[k] = p[k] + t;
}
}
if(flag == -1) for(int i=0; i<n; i++) a[i].x /= n;
}
void mul(cd *a, cd *b, int n) {
int k = 0; while((1<<k) < n) k++;
for(int i=0; i<n; i++) rev[i] = (rev[i>>1]>>1) | ((i&1)<<(k-1));
dft(a, n, 1); dft(b, n, 1);
for(int i=0; i<n; i++) a[i] = a[i] * b[i];
dft(a, n, -1);
}
} cd f[N], g[N];
int n, m, Q, a[N], b[N]; ll c[N];
void cdq(int l, int r) {
if(l == r) {c[0] += (ll) a[l] * b[l]; return;} int mid = (l+r)>>1; int n = 1, lim = r-l+1;
if(r-l < 200) {
for(int i=l; i<=mid; i++) if(a[i] || b[i])
for(int j=mid+1; j<=r; j++) c[i+j] += (ll) a[i] * b[j], c[j-i] += (ll) a[j] * b[i];
} else {
while(n < lim) n<<=1;
for(int i=0; i<n; i++) f[i] = g[i] = cd();
for(int i=l; i<=mid; i++) f[i-l].x += a[i];
for(int i=mid+1; i<=r; i++) g[i-mid].x += b[i];
fft::mul(f, g, n);
for(int i=0; i<lim; i++) c[i+l+mid] += (ll) floor(f[i].x + 0.5); for(int i=0; i<n; i++) f[i] = g[i] = cd();
for(int i=mid+1; i<=r; i++) f[i-mid].x += a[i];
for(int i=l; i<=mid; i++) g[mid-i].x += b[i];
fft::mul(f, g, n);
for(int i=0; i<lim; i++) c[i] += (ll) floor(f[i].x + 0.5);
} cdq(l, mid); cdq(mid+1, r);
} int main() {
//freopen("in", "r", stdin);
int T=read();
fft::init();
while(T--) {
n=read(); m=read(); Q=read();
int l=0, r=0, x;
memset(a, 0, sizeof(a)); memset(b, 0, sizeof(b)); memset(c, 0, sizeof(c));
for(int i=1; i<=n; i++) x=read(), a[x]++, r = max(r, x);
for(int i=1; i<=m; i++) x=read(), b[x]++, r = max(r, x);
cdq(l, r);
while(Q--) printf("%lld\n", c[read()]);
}
}

bzoj 4836: 二元运算的更多相关文章

  1. bzoj 4836: [Lydsy2017年4月月赛]二元运算 -- 分治+FFT

    4836: [Lydsy2017年4月月赛]二元运算 Time Limit: 8 Sec  Memory Limit: 128 MB Description 定义二元运算 opt 满足   现在给定一 ...

  2. bzoj 4836 [Lydsy1704月赛]二元运算 分治FFT+生成函数

    [Lydsy1704月赛]二元运算 Time Limit: 8 Sec  Memory Limit: 128 MBSubmit: 577  Solved: 201[Submit][Status][Di ...

  3. BZOJ 4836: [Lydsy1704月赛]二元运算 分治FFT

    Code: #include<bits/stdc++.h> #define ll long long #define maxn 500000 #define setIO(s) freope ...

  4. [BZOJ4836]二元运算(分治FFT)

    4836: [Lydsy1704月赛]二元运算 Time Limit: 8 Sec  Memory Limit: 128 MBSubmit: 578  Solved: 202[Submit][Stat ...

  5. BZOJ4836: [Lydsy1704月赛]二元运算

    BZOJ4836: [Lydsy1704月赛]二元运算 https://lydsy.com/JudgeOnline/problem.php?id=4836 分析: 分开做,维护两个桶. 分治每次求\( ...

  6. BZOJ 2127: happiness [最小割]

    2127: happiness Time Limit: 51 Sec  Memory Limit: 259 MBSubmit: 1815  Solved: 878[Submit][Status][Di ...

  7. BZOJ 3275: Number

    3275: Number Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 874  Solved: 371[Submit][Status][Discus ...

  8. BZOJ 2879: [Noi2012]美食节

    2879: [Noi2012]美食节 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1834  Solved: 969[Submit][Status] ...

  9. bzoj 4610 Ceiling Functi

    bzoj 4610 Ceiling Functi Description bzoj上的描述有问题 给出\(n\)个长度为\(k\)的数列,将每个数列构成一个二叉搜索树,问有多少颗形态不同的树. Inp ...

随机推荐

  1. C语言中%d,%p,%u,%lu等都有什么用处

    %d 有符号10进制整数(%ld 长整型,%hd短整型 )%hu 无符号短整形(%u无符号整形,%lu无符号长整形)%i 有符号10进制整数 (%i 和%d 没有区别,%i 是老式写法,都是整型格式) ...

  2. 分布式监控系统--zabbix

    1Zabbix简介 Zabbix 是一个企业级的分布式开源监控方案. 2.监控系统架构 C/S架构 客户端/服务器端,这种架构适合规模较小,处于同一地域的环境 C/P/S 客户端/代理端/服务器端/, ...

  3. .26-浅析webpack源码之事件流make(1)

    compilation事件流中,依然只是针对细节步骤做事件流注入,代码流程如图: // apply => this-compilation // apply => compilation ...

  4. maven项目 在eclipse,InteliJ IDEA中的一些问题

    转载请注明出处,谢谢! 不论我们用什么ide来编辑我们的代码,最终的产品都会脱离ide来运行:正如燕飞离了巢,正如你离开了家,不期然就会运转出现问题. - 单强 2018年1月26日11:53 大家是 ...

  5. php ueditor 后台配置项返回格式出错,上传功能将不能正常使用!

    解决常见的有两种 1,可能是时区设置问题,有系统区分大小写. date_default_timezone_set("Asia/chongqing");改为 date_default ...

  6. 【问题解决】java中为什么不建议使用DataInputStream 的readLine()方法

    常用方法 int read(byte[] b) 从包含的输入流中读取一定数量的字节,并将它们存储到缓冲区数组 b 中. int read(byte[] b, int off, int len) 从包含 ...

  7. 图文教程:在Mac上搭建Titanium的iOS开发环境

    http://mobile.51cto.com/web-317170_all.htm 跨平台开发工具Titanium的兴起之路:HTML 5是最大威胁 比较Titanium和PhoneGap两大iOS ...

  8. 【Java框架型项目从入门到装逼】第九节 - 数据库建表和CRUD操作

    1.新建学生表 这节课我们来把和数据库以及jdbc相关的内容完成,首先,进行数据库建表.数据库呢,我们采用MySQL数据库,我们可以通过navcat之类的管理工具来轻松建表. 首先,我们得建一个数据库 ...

  9. vue学习笔记(三)——目录结构介绍

    1.初始目录结构如下: 2.目录结构介绍 目录/文件 说明 build 最终发布的代码存放位置. config 配置目录,包括端口号等.我们初学可以使用默认的. node_modules npm 加载 ...

  10. es6重点笔记:对象

    1,Object.is():比较两个值是否严格相等,es5的'===',不能判断+0和-0,还有NaN,但是es6的Object.is()可以区分 Object.is(+0, -0); // fals ...