Description

题面

题目大意:求从根节点出发,每次随机走一个相邻的点,问走到任意一个叶子节点经过的路径长度的期望(走到就停止)

Solution

树上高斯消元,复杂度是 \(O(n)\) 的

设 \(f[x]\) 表示从 \(x\) 走到任意一个叶子节点路径长度的期望

首先列出转移方程: \(f[x]=\frac{f[fa]+dis(x,fa)+\sum f[son]+dis(x,son)}{in[x]}\)

对于叶子节点 \(f[x]=0\)

对于叶子的父亲只有 \(f[x]\) 和 \(f[fa]\) 两个未知项,我们可以直接把 \(f[x]\) 代入到父亲的方程中

从而使得父亲的方程也只有两个未知数,一直推到根节点,而根节点没有父亲,直接拿常数项除以系数就是答案

#include<bits/stdc++.h>
using namespace std;
const int N=1e5+10,mod=1e9+7;
int head[N],nxt[N<<1],to[N<<1],num=0,n,b[N],fa[N],q[N],DFN=0,k[N],in[N];
inline void link(int x,int y){nxt[++num]=head[x];to[num]=y;head[x]=num;}
inline int qm(int x,int k){
int sum=1;
while(k){
if(k&1)sum=1ll*sum*x%mod;
x=1ll*x*x%mod;k>>=1;
}
return sum;
}
inline int inv(int x){return qm(x,mod-2);}
inline void dfs(int x,int last){
q[++DFN]=x;
for(int i=head[x];i;i=nxt[i])
if(to[i]!=last)fa[to[i]]=x,dfs(to[i],x);
}
int main(){
freopen("pp.in","r",stdin);
freopen("pp.out","w",stdout);
int x,y,z;
scanf("%d",&n);
for(int i=1;i<n;i++){
scanf("%d%d%d",&x,&y,&z);x++;y++;
link(x,y);link(y,x);k[x]++;k[y]++;
b[x]+=z;b[y]+=z;
}
for(int i=1;i<=n;i++)in[i]=k[i];
dfs(1,1);
for(int i=n;i>=1;i--){
int x=q[i];
if(in[x]==1)continue;
k[fa[x]]=(k[fa[x]]-inv(k[x]))%mod;
b[fa[x]]=(b[fa[x]]+1ll*inv(k[x])*b[x])%mod;
}
b[1]=1ll*b[1]*inv(k[1])%mod;
if(b[1]<0)b[1]+=mod;
printf("%d\n",b[1]);
return 0;
}

Codeforces 802L Send the Fool Further! (hard)的更多相关文章

  1. 【树形DP】codeforces K. Send the Fool Further! (medium)

    http://codeforces.com/contest/802/problem/K [题意] 给定一棵树,Heidi从根结点0出发沿着边走,每个结点最多经过k次,求这棵树的最大花费是多少(同一条边 ...

  2. 【CF802L】Send the Fool Further! (hard) 高斯消元

    [CF802L]Send the Fool Further! (hard) 题意:给你一棵n个节点的树,每条边有长度,从1号点开始,每次随机选择一个相邻的点走,走到一个叶子时就停止,问期望走的总路程. ...

  3. Codeforces 1239A. Ivan the Fool and the Probability Theory

    传送门 注意到连续两个格子如果有相同颜色那么一路过去的都可以确定 比如一开始染了这两个位置: 然后发现后面整片过去都可以确定: 对于横着的情况也是一样,然后就会发现不可能出现横着两个和竖着两个同时都有 ...

  4. Codeforces 1255E Send Boxes to Alice(前缀和+枚举+数论)

    我们考虑前缀和sum[i],如果将a[i+1]中的一个塞入a[i]中,则不影响sum[i+1],但是sum[i]++,如果将a[i]中的一个塞入a[i+1],则不影响sum[i+1],但是sum[i] ...

  5. Codeforces 1248C Ivan the Fool and the Probability Theory(推公式)

    题意 一个n*m的网格图,每个格子可以染黑色.白色,问你每个格子最多有一个相邻颜色相同的方案数 n,m<=1e5 思路 我们先处理\(1 \times m\)的情况 设\(f[i][j]\)为前 ...

  6. [PKUWC 2018]随机游走

    Description 题库链接 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次询问给定一个集合 \(S\) ...

  7. Codeforces 802 补题

    codeforces802 A-O Helvetic Coding Contest 2017 online mirror A  Heidi and Library (easy) 水题 同B #incl ...

  8. Helvetic Coding Contest 2017 online mirror (teams allowed, unrated)

    G. Fake News (easy) time limit per test 1 second memory limit per test 256 megabytes input standard ...

  9. Helvetic Coding Contest 2017 online mirror (teams allowed, unrated) J

    Description Heidi's friend Jenny is asking Heidi to deliver an important letter to one of their comm ...

随机推荐

  1. Alpha冲刺No.5

    一.站立式会议 在助教帮助下,优先解决404的问题,将demo移植到自己项目上. 进一步制作界面. 将已做好的内容,移植到手机做部分测试,能够在同一路由子网内登录数据库. 二.实际项目进展 已经解决了 ...

  2. 使用Spark MLlib进行情感分析

    使用Spark MLlib进行情感分析             使用Spark MLlib进行情感分析 一.实验说明 在当今这个互联网时代,人们对于各种事情的舆论观点都散布在各种社交网络平台或新闻提要 ...

  3. oracle导入命令,记录一下

    工作中用到了,这个命令,记录一下,前提要安装imp.exe imp PECARD_HN/PECARD_HN@127.0.0.1:1521/orcl file=E:\work\dmp\PECARD_HN ...

  4. Python内置函数(55)——globals

    英文文档: globals() Return a dictionary representing the current global symbol table. This is always the ...

  5. 算法题丨Move Zeroes

    描述 Given an array nums, write a function to move all 0's to the end of it while maintaining the rela ...

  6. api-gateway实践(07)新服务网关 - 手动发布

    应用地址:http://10.110.20.191:8080/api-gateway-engine/ 一.准备工作 1.xshell登陆云主机 1.1.配置链接 1.2.链接成功 1.3.关闭防火墙 ...

  7. Groovy入门(2-2)Groovy的eclipse插件安装

    1.安装eclipse插件 启动eclipse,点击help -> Install New Software... 在弹出的窗口中点击:Add... Groovy插件的地址:http://dis ...

  8. UVA732【DFS+栈】

    题目:已知两个单词,利用一个栈,将第一个单词变成第二个单词,求出所有可能的操作序列. #include <stdio.h> #include<iostream> #includ ...

  9. 归档(NSKeyedArchiver)的使用

    归档的使用,是归于使用保存数据,但是一些简单的数据,如数组,字典等基本的数据类型,往往不使用在归档中,归档和plist以及UserDefaults最大的区别就在于,前者可以存放自定义的数据类型,而后两 ...

  10. Asp.Net Core 2.0 项目实战(8)Core下缓存操作、序列化操作、JSON操作等Helper集合类

    本文目录 1.  前沿 2.CacheHelper基于Microsoft.Extensions.Caching.Memory封装 3.XmlHelper快速操作xml文档 4.Serializatio ...