BZOJ_2661_[BeiJing wc2012]连连看_费用流

Description

凡是考智商的题里面总会有这么一种消除游戏。不过现在面对的这关连连看可不是QQ游戏里那种考眼力的游戏。我们的规则是,给出一个闭区间[a,b]中的全部整数,如果其中某两个数x,y(设x>y)的平方差x2-y2是一个完全平方数z2,并且y与z互质,那么就可以将x和y连起来并且将它们一起消除,同时得到x+y点分数。那么过关的要求就是,消除的数对尽可能多的前提下,得到足够的分数。快动手动笔算一算吧。

Input

只有一行,两个整数,分别表示a,b。

Output

两个数,可以消去的对数,及在此基础上能得到的最大分数。

Sample Input

1 15

Sample Output

2 34

HINT

对于30%的数据,1<=a,b<=100

对于100%的数据,1<=a,b<=1000


首先考虑拆点,对于符合条件的(i,j),连i->j(1,i+j)和j->i(1,i+j)两条边。

如果只连一条边不能限制住每个数只用一次,如果正反两条都连说明如果一个选了另一个必须也选。

而且不会出现流出去流不回来的情况。

那么求最大费用最大流,答案除个2即可。

代码:

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <math.h>
using namespace std;
#define N 1000050
#define S (2*n+1)
#define T (2*n+2)
#define inf 100000000
typedef double f2;
#define eps 1e-6
f2 Abs(f2 x) {return x>0?x:-x;}
int head[N],to[N<<1],nxt[N<<1],flow[N<<1],cnt=1,n,dis[N],Q[N],l,r,val[N<<1],inq[N];
int path[N],A,B;
bool check(int y,int x) {
int z=x*x-y*y;
int p=(int)(sqrt(z));
if(p*p!=z) return 0;
// puts("FUCK");
return __gcd(p,y)==1;
}
void add(int u,int v,int f,int w) {
to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt; flow[cnt]=f; val[cnt]=w;
to[++cnt]=u; nxt[cnt]=head[v]; head[v]=cnt; flow[cnt]=0; val[cnt]=-w;
}
bool spfa() {
memset(dis,0xef,sizeof(dis));
memset(path,0,sizeof(path));
l=r=0; Q[r++]=S; dis[S]=0; inq[S]=1;
while(l!=r) {
int x=Q[l++],i;inq[x]=0; if(l==T) l=0;
for(i=head[x];i;i=nxt[i]) {
if(dis[to[i]]<dis[x]+val[i]&&flow[i]) {
dis[to[i]]=dis[x]+val[i];
path[to[i]]=i^1;
if(!inq[to[i]]) {
inq[to[i]]=1; Q[r++]=to[i];
if(r==T) r=0;
}
}
}
}
return path[T];
}
void mfmc() {
int mc=0,mf=0;
while(spfa()) {
int nf=1<<30;
int i;
for(i=T;i!=S;i=to[path[i]]) {
nf=min(nf,flow[path[i]^1]);
}
for(i=T;i!=S;i=to[path[i]]) {
flow[path[i]]+=nf;
flow[path[i]^1]-=nf;
mc+=nf*val[path[i]^1];
}
mf+=nf;
}
printf("%d %d\n",mf>>1,mc>>1);
}
int main() {
scanf("%d%d",&A,&B);
n=B-A+1;
int i,j;
for(i=1;i<=n;i++) {
add(S,i,1,0); add(i+n,T,1,0);
for(j=i+1;j<=n;j++) {
if(check(i+A-1,j+A-1)) {
add(i,j+n,1,i+A-1+j+A-1);
add(j,i+n,1,i+A-1+j+A-1);
}
}
}
mfmc();
}

BZOJ_2661_[BeiJing wc2012]连连看_费用流的更多相关文章

  1. 【BZOJ2661】[BeiJing wc2012]连连看 最大费用流

    [BZOJ2661][BeiJing wc2012]连连看 Description 凡是考智商的题里面总会有这么一种消除游戏.不过现在面对的这关连连看可不是QQ游戏里那种考眼力的游戏.我们的规则是,给 ...

  2. 【bzoj2661】[BeiJing wc2012]连连看 最大费用最大流

    题目描述 凡是考智商的题里面总会有这么一种消除游戏.不过现在面对的这关连连看可不是QQ游戏里那种考眼力的游戏.我们的规则是,给出一个闭区间[a,b]中的全部整数,如果其中某两个数x,y(设x>y ...

  3. BZOJ 2661: [BeiJing wc2012]连连看 费用流

    2661: [BeiJing wc2012]连连看 Description 凡是考智商的题里面总会有这么一种消除游戏.不过现在面对的这关连连看可不是QQ游戏里那种考眼力的游戏.我们的规则是,给出一个闭 ...

  4. [BZOJ2661][BeiJing wc2012]连连看 费用流

    2661: [BeiJing wc2012]连连看 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1349  Solved: 577[Submit][ ...

  5. BZOJ2661: [BeiJing wc2012]连连看

    2661: [BeiJing wc2012]连连看 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 483  Solved: 200[Submit][S ...

  6. BZOJ_1834_[ZJOI2010]network 网络扩容_费用流

    BZOJ_1834_[ZJOI2010]network 网络扩容_费用流 题意: 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用. 求:  1.在不扩容的 ...

  7. BZOJ_1877_[SDOI2009]晨跑_费用流

    BZOJ_1877_[SDOI2009]晨跑_费用流 题意: Elaxia最近迷恋上了空手道,他为自己设定了一套健身计划,比如俯卧撑.仰卧起坐等 等,不过到目前为止,他 坚持下来的只有晨跑. 现在给出 ...

  8. BZOJ_1070_[SCOI2007]修车_费用流

    BZOJ_1070_[SCOI2007]修车_费用流 Description 同一时刻有N位车主带着他们的爱车来到了汽车维修中心.维修中心共有M位技术人员,不同的技术人员对不同 的车进行维修所用的时间 ...

  9. BZOJ_2662_[BeiJing wc2012]冻结_分层图最短路

    BZOJ_2662_[BeiJing wc2012]冻结_分层图最短路 Description “我要成为魔法少女!”     “那么,以灵魂为代价,你希望得到什么?” “我要将有关魔法和奇迹的一切, ...

随机推荐

  1. int类型被强制转换成较低精度的byte类型

    公司的项目上线之前会进行代码合规性检查,其中很容易违反的一个规则就是“不要把原始类型转换成较低的精度”,实际开发的过程中,很多方法在处理数据时,尤其在做移位操作的时候,难免要把int类型转换成byte ...

  2. onload="fixImage(this, 200, 200)"

    function fixImage(img, w, h) { var newImg = new Image(); //获得图片的原始尺寸 newImg.src = img.src; var lh; / ...

  3. App 被拒 -- App Store Review Guidelines (2015)中英文对照

    Introduction(简介) We're pleased that you want to invest your talents and time to develop applications ...

  4. two sum II

    Given an array of integers that is already sorted in ascending order, find two numbers such that the ...

  5. JavaScript中高阶函数

    https://zhuanlan.zhihu.com/p/23836323?refer=dreawer 高阶函数就是可以将函数作为另一个函数的参数.例如:将两个数的平方相加,这里匿名函数fn就是函数被 ...

  6. Day4_迭代器

    迭代器: 是一个重复的过程,每一次重复都是基于上一次的结果而来. 可迭代对象: 凡是对象有_iter_方法(对象._iter_),该对象就是可迭代对象. 字符串,列表,元组,字典等都是可迭代对象. 可 ...

  7. eclipse3.7+resin4.0集成配置小结

    1.插件不要用improve公司的了,那个太老了.直接用resin官方的,用eclipse的help->install new software功能,地址用:http://www.caucho. ...

  8. 关于JavaScript的那些话

    1.初学者动手环境----推荐Chrome的控制台(F12调用)2.JS中两个非常重要的数据类型是对象和数组.3.JavaScript 程序是用Unicode字符集编写的.4.JavaScript是区 ...

  9. python3学习笔记1---引用http://python3-cookbook.readthedocs.io/zh_CN/latest/

    2018-02-28数据结构和算法(1) 1.1解压序列赋值给多个变量: 任何的序列(或者是可迭代对象)可以通过一个简单的赋值语句解压并赋值给多个变量. 唯一的前提就是变量的数量必须跟序列元素的数量是 ...

  10. Ocelot中文文档-服务发现

    Ocelot允许您指定服务发现提供程序,并使用它来查找Ocelot正在将请求转发给下游服务的主机和端口.目前,这仅在GlobalConfiguration部分中受支持,这意味着所有ReRoute将使用 ...