[学习笔记]Min-25筛
一、
基本操作:
筛1~N中的素数个数。n=1e9
设F(M,j)表示,2~M的所有数中,满足以下条件之一的数的个数:
①x是质数
②x最小质因子大于(注意是大于没有等号)$P_j$(第j个质数)
转移方程:
$F(M,j)=F(M,j-1)-(F([M/{P_j}],j-1)-(j-1))$
理解的话,考虑埃氏筛的做法(这里从${P_j}^2$开始筛)
统计这一次被删掉的数的个数也即形如:$x=P_j*some P_{j+x} (x>=0 \&\&some P_{j+x}<=[M/P_j])$
其实就是M以内,最小质因子为$P_j$的数的个数(除了$P_j$自己)
可以发现,每一个这样的$someP_{j+x}$都在后面枚举到并且减去了
由于是从$P_j^2$开始筛,所以类似$P_j*P_{j-1}$的之前已经被减掉了,不包含在$F(M,j-1)$里。
所以再加上$(j-1)$
具体方法的话:
其实最后一个j,满足$P_j^2<=N\&\&P_{j+1}^2>N$
先要找到这个j,也就是筛出来小于$[\sqrt N]$的所有质数
以大于根号n下取整的质数作为最小质因子的数,要不然本身就是质数,要不然一定就大于N了。
设这个j为cnt
由于最终的答案是:$F(N,cnt)$
所以涉及一切所谓$M/P_j$的,其实都是一些$N/x(2<=x<=N)$只有根号种
把所有这根号n个数都先找出来,放在第一维的位置,设上界为lim,val[lim]=N
cnt作为第二维j的上限
然后外层枚举j,内层枚举i
这样用数组$f[M]$一维直接代表$f[M][j]$(类似0/1背包那种)
大概代码长这样:
for(j=1->cnt)
for(i=lim->0){
f[i]=f[i]-(f[i/p[j]]-(j-1))
}
一个剪枝是,如果
存在$P_j^2>M$那么其实$F[M][j]=F[M][j-1]$(你用$P_j$不会多干掉任何一个数)
由于是一维数组,所以不用管相当于直接继承。
所以可以加这个剪枝:
for(j=1->cnt)
for(i=lim->0){
if(i/p[j]<p[j]) break; //后面i更小,一定都不行了
f[i]=f[i]-(f[i/p[j]]-(j-1));
}
传说复杂度$O(N^{\frac{3}{4}})$
二、
一个进阶的计算需求是:
求$\sum_{i=1}^n i^k*[i\space is\space prime]$
其实刚才求的是k=0的特殊情况
公式:$F(M,j)=F(M,j-1)-P_j^k(F([M/{P_j}],j-1)-\sum_{i=1}^{j-1}P_i^k)$
其实这里意义变了一下,对应:
$F(M,j)$表示,1到M中的满足以下条件的所有数的k次方和:
①x是质数
②x最小质因子大于(注意是大于没有等号)$P_j$(第j个质数)
就是多了一个权值
后面的$\sum_{i=1}^{j-1}P_i^k$可以预处理
三、
Min_25筛能干的是当然不止这个
实际上爆踩杜教筛,可以筛符合以下条件的一切积性函数:
①f(p)=关于p的低次多项式
②f(p^c)可以快速算出
例如:求:
$\sum_{i=1}^N \phi (i)$
类比,设:$G(M,j)$表示2~M满足x的最小质因子>=$P_j$的数的$phi(x)$的和。
考虑枚举最小质因子$P_t$以及它的次数e那么有:
$G(M,j)=\sum_{t=j}^{cnt} \sum_{e=1}^{p_t^{e+1}<=M} [\phi(p_t^e)*G([M/(p_t^e)],t+1)+\phi(p_t^{(e+1)})]$
$+(F(M)-(F(p_{j-1})))$
第一部分枚举每个除了质数自己的最小质因子>=$P_j$的数。能乘G的原因是积性函数
第二部分枚举每个质数的$\phi$之和。
(这里F(M)表示,小于等于M的质数的phi之和。可以用$\sum_{i=1}^n i^1*[i\space is\space prime]-\sum_{i=1}^n i^0*[i\space is\space prime]$
也就是$\phi(p)=p-1$
答案是$G(N,1)+F(1)$
具体实现。。。。见下面例题
对于一般的函数,把所有的$\phi$换成$F$即可。当然F要满足开头的两个性质
然后大功告成!!!
DIVCNT2&&3 - Counting Divisors
对比杜教筛
优势:理论计算快,实际计算效果很好,n<=1e9时候优势很大
几乎适用各种积性函数。不需要构造卷积形式
空间优秀!O(n^0.5)
劣势:多组数据没有记忆化,就没什么优势了。必须是积性函数。(杜教筛如果能构造卷积,不是积性函数也可以的)
稍微难写一些。
[学习笔记]Min-25筛的更多相关文章
- 「学习笔记」Min25筛
「学习笔记」Min25筛 前言 周指导今天模拟赛五分钟秒第一题,十分钟说第二题是 \(\text{Min25}\) 筛板子题,要不是第三题出题人数据范围给错了,周指导十五分钟就 \(\text{AK ...
- Flutter学习笔记(25)--ListView实现上拉刷新下拉加载
如需转载,请注明出处:Flutter学习笔记(25)--ListView实现上拉刷新下拉加载 前面我们有写过ListView的使用:Flutter学习笔记(12)--列表组件,当列表的数据非常多时,需 ...
- 学习笔记(25)- NLP的几个概念
NLP的几个概念 从技术研究的角度,简单介绍自然语言处理的几个概念 1. 对抗学习 主要指对抗生成网络. 2个主要构成:判别器.生成器 判别模型尽可能提取特征正确率增加的模型,生成模型尽可能" ...
- 「学习笔记」min_25筛
前置姿势 魔力筛 其实不看也没关系 用途和限制 在\(\mathrm{O}(\frac{n^{0.75}}{\log n})\)的时间内求出一个积性函数的前缀和. 所求的函数\(\mathbf f(x ...
- ReactiveX 学习笔记(25)使用 RxJS + Vue.js 调用 REST API
JSON : Placeholder JSON : Placeholder (https://jsonplaceholder.typicode.com/) 是一个用于测试的 REST API 网站. ...
- Javascript高级编程学习笔记(25)—— 函数表达式(3)模仿块级作用域
昨天写了闭包 今天就来聊聊块级作用域的事情 在绝大多数编程语言中,都有块级作用域这个概念 什么是块级作用域呢? 前面我们在刚开始讲的时候说过,JS中的大括号(不在赋值运算符的后面)表示代码块 块级作用 ...
- C#学习笔记(25)——用刻盘器批量从U盘删除添加文件
说明(2017-11-17 14:46:05): 1. 因为经常要从U盘里面删除版本,然后添加版本,每次都要几个人手动复制粘贴,费时费力,就花了一下午时间写了个程序,自动删除和添加版本. 2. Dri ...
- UNIX环境编程学习笔记(25)——信号处理进阶学习之 sigaction 函数
lienhua342014-11-05 sigaction 函数跟 signal 函数一样,用于设置信号处理函数.此函数是用于取代 UNIX 早期版本使用的 signal 函数.UNIX 早期版本的 ...
- Haskell语言学习笔记(25)MonadState, State, StateT
MonadState 类型类 class Monad m => MonadState s m | m -> s where get :: m s get = state (\s -> ...
- 2015.03.12,外语,读书笔记-《Word Power Made Easy》 10 “如何讨论交谈习惯”学习笔记 SESSION 25
1.about keeping one's mouth shut taciturn,名词形式taciturnity,沉默寡言. 美国第30任总统库里奇,以沉默寡言著称.他来自新英格兰,那里视tacit ...
随机推荐
- java.lang.Boolean.valueOf(String s)
简单说,就是s为true(这四个字母大小写任意)时,返回值为true,否则为false public class one { public static void main(String[] args ...
- Lua学习笔记(4): 字符串
Lua的字符串有3种初始化方式 str = "2333" str = 'hahahaha' str = [[ruarua]] 其中单引号和双引号的初始化方式并无区别,[[]]双中括 ...
- TW实习日记:第五天
今天可以说是非常忙的一天了,要再项目中实现微信相关的功能:授权登录以及扫码登录,还有就是自建应用的发送消息.首先功能代码其实在经过了几天的学习之后并没有很难,但是最让我难受的是在项目中去加代码,首先s ...
- python-property、__get__、__set__
目录 property __set__ 和 __get__ property property装饰器的应用来自这样一个问题:如果对实例的属性值不加以限制,那么实例的属性值会出现明显不合理的情况,为了解 ...
- Echarts-K线图提示框改头换面
工作: 使用Hbuilder建web工程,加入echarts相关库,根据需要更改K线图及其的提示样式,去除默认提示,使用异步加载echarts的数据,数据格式为json. 需要注意的K线图和5日均线, ...
- Dilworth定理
来自网络的解释: 定理内容及其证明过程数学不好看不懂. 通俗解释: 把一个数列划分成最少的最长不升子序列的数目就等于这个数列的最长上升子序列的长度(LIS) EXAMPLE 1 HDU 1257 ...
- 【Pthon入门学习】99乘法表
学习知识点: 1. string.join(seq): 以string字符串作为分隔符,将seq的所有元素拼接成一个新的字符串 s = ['%d * %d = %d' % (y, 4, 4*y) fo ...
- pyextend库-accepts函数参数检查
pyextend - python extend lib accepts(exception=TypeError, **types) 参数: exception: 检查失败时的抛出异常类型 **typ ...
- 一个简单的rest_framework demo
models.py from django.db import models class UserInfo(models.Model): username = models.CharField(max ...
- Echarts数据可视化全解
点击进入 Echarts数据可视化全解