【BZOJ4004】装备购买(线性基)
【BZOJ4004】装备购买(线性基)
题面
Description
脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示
(1 <= i <= n; 1 <= j <= m),每个装备需要花费 ci,现在脸哥想买一些装备,但是脸哥很穷,所以总是盘算着
怎样才能花尽量少的钱买尽量多的装备。对于脸哥来说,如果一件装备的属性能用购买的其他装备组合出(也就是
说脸哥可以利用手上的这些装备组合出这件装备的效果),那么这件装备就没有买的必要了。严格的定义是,如果
脸哥买了 zi1,.....zip这 p 件装备,那么对于任意待决定的 zh,不存在 b1,....,bp 使得 b1zi1 + ... + bpzi
p = zh(b 是实数),那么脸哥就会买 zh,否则 zh 对脸哥就是无用的了,自然不必购买。举个例子,z1 =(1; 2;
3);z2 =(3; 4; 5);zh =(2; 3; 4),b1 =1/2,b2 =1/2,就有 b1z1 + b2z2 = zh,那么如果脸哥买了 z1 和 z2
就不会再买 zh 了。脸哥想要在买下最多数量的装备的情况下花最少的钱,你能帮他算一下吗?
Input
第一行两个数 n;m。接下来 n 行,每行 m 个数,其中第 i 行描述装备 i 的各项属性值。接下来一行 n 个数,
其中 ci 表示购买第 i 件装备的花费。
Output
一行两个数,第一个数表示能够购买的最多装备数量,第二个数表示在购买最多数量的装备的情况下的最小花费
Sample Input
3 3
1 2 3
3 4 5
2 3 4
1 1 2
Sample Output
2 2
HINT
如题目中描述,选择装备 1 装备 2,装备 1 装备 3,装备 2 装备 3 均可,但选择装备 1 和装备 2 的花费最小,为 2。对于 100% 的数据, 1 <= n;m <= 500; 0 <= aj <= 1000。
题解
很有道理的线性基,完全没有想到还有这种用法
其实回忆一下异或线性基的使用方法
我们可以理解为是在解一个异或方程组
方法是类似与高斯消元。
那么,这里不再是异或方程组,就是一个普通的方程组
那么,可以类似于异或线性基的做法
如果有当前系数的方程已经在线性基中存在
那么,把当前方程的每一项系数都按照对应的倍数减一下(这不就是高斯消元?)
然后继续向后面的位置检查就行了。
如果一个方程组可以被另外的方程组给表示出来
那么,它在线性基中一定无法插入进去(是不是很类似于把一个数丢进异或线性基,跑出来如果是\(0\)就可以被其他的数的异或和所表示)
考虑怎么求解,就和异或线性基一样的套路啦,
按照价格从小到达排序,能够插进去就插进去,
最后统计一下答案就好啦
本题卡精度
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 555
#define double long double
#define eps (1e-6)
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
bool vis[MAX];
double p[MAX][MAX];
int n,m;
struct Node{int c;double p[MAX];}a[MAX];
bool operator<(Node a,Node b){return a.c<b.c;};
bool insert(int x)
{
for(int i=1;i<=m;++i)
{
if(fabs(a[x].p[i])<=eps)continue;
if(vis[i])
{
double b=a[x].p[i]/p[i][i];
for(int j=i;j<=m;++j)a[x].p[j]-=p[i][j]*b;
}
else
{
vis[i]=true;
for(int j=i;j<=m;++j)p[i][j]=a[x].p[j];
return true;
}
}
return false;
}
int main()
{
n=read();m=read();
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j)
a[i].p[j]=read();
for(int i=1;i<=n;++i)a[i].c=read();
sort(&a[1],&a[n+1]);
int ans1=0,ans2=0;
for(int i=1;i<=n;++i)
if(insert(i))++ans1,ans2+=a[i].c;
printf("%d %d\n",ans1,ans2);
return 0;
}
【BZOJ4004】装备购买(线性基)的更多相关文章
- BZOJ 4004 [JLOI2015]装备购买 | 线性基
题目链接 Luogu P3265 题解 非常正常的线性基! 但是我不会线性基-- (吐槽:#define double long double 才过--) #include <cstdio> ...
- BZOJ 4004 [JLOI2015]装备购买 ——线性基
[题目分析] 题目很简单,就是要维护一个实数域上的线性基. 仿照异或空间的线性基的方法,排序之后每次加入一个数即可. 卡精度,开long double 和 1e-6就轻松水过了. [代码] #incl ...
- bzoj4004 [JLOI2015]装备购买——线性基+贪心
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4004 今天讲课讲到的题,据说满足拟阵的性质,所以贪心是正确的: 总之就贪心,按价格从小到大排 ...
- 【bzoj4004】[JLOI2015]装备购买 贪心+高斯消元求线性基
题目描述 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 <= j < ...
- 【bzoj4004】【JLOI2015】装备购买 (线性基+高斯消元)
Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 < ...
- 【题解】 bzoj4004: [JLOI2015]装备购买 (线性基)
bzoj4004,戳我戳我 Solution: 裸的线性基,这没啥好说的,我们说说有意思的地方(就是我老是wa的地方) Attention: 这题在\(luogu\),上貌似不卡精度,\(bzoj\) ...
- BZOJ4004 [JLOI2015]装备购买[贪心+线性基+高消]
一个物品可以被其他物品表出,说明另外的每个物品看成矩阵的一个行向量可以表出该物品代表的行向量. 于是构造矩阵,求最多选多少个物品,就是尽可能用已有的物品去表示,相当于去消去一些没必要物品, 类似于xo ...
- BZOJ_4004_[JLOI2015]装备购买_线性基
BZOJ_4004_[JLOI2015]装备购买_线性基 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) ...
- 洛谷P3265 [JLOI2015]装备购买 [线性基]
题目传送门 装备购买 格式难调,题面就不放了. 分析: 一句话,有$n$件物品,每件物品有$m$个属性和一个花费值,如果一个装备的属性值可以由其他装备的属性值改变系数后组合得到那就不买,求购买最多装备 ...
随机推荐
- PHP 中的mktime()函数本周时间
上周写一个接口,用到了本周的开始时间和结束时间作为筛选条件去筛选数据,我只记得有mktime()这个函数,具体怎么用的不太清楚,于是百度之,找到了这个: 本周开始时间:date("Y-m-d ...
- 【CentOS】安装Docker教程
前提条件 Docker 运行在 CentOS 7 上,要求系统为64位.系统内核版本为 3.10 以上. Docker 运行在 CentOS-6.5 或更高的版本的 CentOS 上,要求系统为64位 ...
- String中intern()方法
intren方法:通俗的讲,是将字符串放入常量池中. new出来的字符串是放在堆中,直接赋值的字符串是放在常量池中的. 对字符串做拼接操作,即做“+”运算,分两种情况 (1)表达式右边是纯字符串常量, ...
- [python]序列的重复操作符
当你需要需要一个序列的多份拷贝时,重复操作符非常有用,它的语法如下: sequence * copies_int In [1]: a = [1,2,3,4] In [2]: a * 5 Out[2]: ...
- Paper Reading - Deep Visual-Semantic Alignments for Generating Image Descriptions ( CVPR 2015 )
Link of the Paper: https://arxiv.org/abs/1412.2306 Main Points: An Alignment Model: Convolutional Ne ...
- Hibernate入门篇<1>hibernate.cfg.xml学习小结
Hibernate配置文件主要用于配置数据库连接和Hibernate运行时所需的各种属性,这个配置文件应该位于应用程序或Web程序的类文件夹 classes中.Hibernate配置文件支持两种形式, ...
- VisualSVN Server的配置和使用方法
VisualSVN Server的配置和使用方法 VisualSVN Server的配置和使用方法[服务器端] 安装好VisualSVN Server后[安装过程看这里],运行VisualSVN Se ...
- PIGCMS 关闭聊天机器人(小黄鸡)
无脑操作举例 1.找到 WeixinAction.class.php 文件,路径: 你的版本\PigCms\Lib\Action\Home 2.查询 function chat ,在 chat() 函 ...
- PHP中的数据类型
PHP中包含8种数据类型,其中包括4种标量:整型,浮点型,字符串,布尔值:2种复合类型:数组和对象:一种resource类型,剩下的一种是NULL类型. 整型 PHP中的整型可以是负,也可以是正,而整 ...
- 基础系列(6)—— C#类和对象
一.类介绍 类(class)是C#类型中最基础的类型.类是一个数据结构,将状态(字段)和行为(方法和其他函数成员)组合在一个单元中.类提供了用于动态创建类实例的定义,也就是对象(objec ...