Time Limit: 30 Sec  Memory Limit: 512 MB
Submit: 2901  Solved: 1196
[Submit][Status][Discuss]

Description

给你一个无向带权连通图,每条边是黑色或白色。让你求一棵最小权的恰好有need条白色边的生成树。
题目保证有解。

Input

第一行V,E,need分别表示点数,边数和需要的白色边数。
接下来E行,每行s,t,c,col表示这边的端点(点从0开始标号),边权,颜色(0白色1黑色)。

Output

一行表示所求生成树的边权和。
V<=50000,E<=100000,所有数据边权为[1,100]中的正整数。

Sample Input

2 2 1
0 1 1 1
0 1 2 0

Sample Output

2

HINT

原数据出错,现已更新 by liutian,但未重测---2016.6.24

Source

对于图上的最小生成树

如果我们得到的最小生成树上的白边小于$need$条,那么说明白边的权值整体偏大,

那么我们考虑对所有的白边减去一个权值,这样最小生成树上的白边就会变多

这个过程很显然具有单调性,于是可以二分减去的权值

注意一个坑:当权值相同的时候优先选择白边

#include<cstdio>
#include<algorithm>
using namespace std;
const int MAXN = 1e6 + ;
inline int read() {
char c = getchar(); int x = , f = ;
while(c < '' || c > '') {if(c == '-') f = -; c = getchar();}
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * f;
}
int N, M, need;
struct Edge {
int u, v, w, opt;
bool operator <(const Edge &rhs) const {
return w == rhs.w ? opt < rhs.opt : w < rhs.w;
}
}E[MAXN], e[MAXN];
int Val = , fa[MAXN];
int siz[MAXN];
int find(int x) {
return fa[x] == x ? fa[x] : fa[x] = find(fa[x]);
}
int unionn(int x, int y) {
int fx = find(x), fy = find(y);
if(siz[fx] < siz[fy]) swap(fx, fy);
fa[fy] = fx;
}
bool check(int x) {
Val = ;
for(int i = ; i <= M; i++) {
E[i] = e[i];
if(e[i].opt == ) E[i].w += x;
}
for(int i = ; i <= N; i++)
fa[i] = i, siz[i] = ;
int tot = , white = ;
sort(E + , E + M + );
for(int i = ; i <= M; i++) {
if(find(E[i].u) != find(E[i].v)) {
unionn(E[i].u, E[i].v);
Val += E[i].w; tot++;
if(E[i].opt == ) white++;
}
if(tot == N - ) break;
}
return white >= need;
}
main() {
#ifdef WIN32
freopen("a.in", "r", stdin);
#endif
N = read(), M = read(), need = read();
for(int i = ; i <= M; i++) {
int x = read() + , y = read() + , z = read(), opt = read();
e[i] = (Edge){x, y, z, opt};
}
int l = -, r = , ans = ;
while(l <= r) {
int mid = l + r >> ;
if(check(mid)) ans = Val - mid * need, l = mid + ;
else r = mid - ;
}
printf("%d", ans);
}

BZOJ 2654: tree(二分 最小生成树)的更多相关文章

  1. BZOJ 2654: tree( 二分 + MST )

    我们给白色的边增加权值 , 则选到的白色边就会变多 , 因此可以二分一下. 不过这道题有点小坑... ------------------------------------------------- ...

  2. bzoj 2654 tree - 二分法 - 最小生成树

    给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有need条白色边的生成树. 题目保证有解. Input 第一行V,E,need分别表示点数,边数和需要的白色边数. 接下来E行,每行 ...

  3. bzoj 2654 tree 二分+kruskal

    tree Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 2739  Solved: 1126[Submit][Status][Discuss] Des ...

  4. BZOJ 2654: tree Kruskal+二分答案

    2654: tree Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 1863  Solved: 736[Submit][Status][Discuss ...

  5. BZOJ 2654 tree(二分答案+并查集)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2654 [题目大意] 给你一个无向带权连通图,每条边是黑色或白色. 让你求一棵最小权的恰 ...

  6. BZOJ 2654: tree

    Description \(n\) 个点, \(m\) 条边,边有权值和黑/白色,求含有 \(need\) 个白边的生成树. Sol 二分+Kruskal. 将每条白边都加上一个权值,然后跑最小生成树 ...

  7. [BZOJ 2654]tree(陈立杰)

    Description 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有need条白色边的生成树. 题目保证有解. Input 第一行V,E,need分别表示点数,边数和需要的白色 ...

  8. BZOJ 2654 & 玄学二分+MST

    题意: 给一张图,边带权且带颜色黑白,求出一棵至少包含k条白边的MST SOL: 正常人都想优先加黑边或者是白边,我也是这么想的...你看先用白边搞一棵k条边的MST...然后维护比较黑边跟白边像堆一 ...

  9. hdu 4253 Two Famous Companies BZOJ 2654 tree

    [题意]:给出n个点,m条边,边分为两种,一种是A公司的,一种是B公司的.边上有权值,问用n-1条边把n个点连起来的最小费用是多少,其中A公司的边刚好有k条.题目保证有解. 思路:我们发现,如果我们给 ...

随机推荐

  1. springmvc中Controller前端控制器的映射与返回数据,以及异常处理

    .@RequestMapping映射 该注解中存的是映射路径的字符串 1.1 value的值是一个数组,也就是说可以定义多个访问路径,同时“.action”可以省略,前端控制器中主要查找主体部分.注意 ...

  2. git 和github

    ssh git:    是一个版本管理工具,是可以在你电脑不联网的情况下,只在本地使用的一个版本管理工具,其作用就是可以让你更好的管理你的程序,比如你原来提交过的内容,以后虽然修改了,但是通过git这 ...

  3. css动画 文字闪烁效果

    /*定义页面基础CSS*/ body{ font-family: 'microsoft yahei',Arial,sans-serif; color: #EFEFEF; background: #22 ...

  4. August 26th 2017 Week 34th Saturday

    Love means finding the beauty in someone's imperfections. 爱情就是在那个人的不完美中找到美. Our mate isn't actually ...

  5. August 18th 2017 Week 33rd Friday

    If you shed tears when you miss the sun, you also miss the stars. 如果你因为错过太阳而哭泣,你也将会错过繁星. If you have ...

  6. 16.1 eclipse设置

    内容:删除注释自动生成:添加自己使用的模板syso:设置字体:设置黑色主题 // 删除注释自动生成,强迫症表示很受不了那个什么自动生成方法注释,所以我把它关了 我之前的截图,删除那个todo的注释行 ...

  7. html禁用缓存

    <!-- 禁用缓存 --><meta http-equiv="pragma" content="no-cache"><META H ...

  8. IOS Singleton(单例)

    Singleton.h // .h #define singleton_interface(class) + (instancetype)shared##class; // .m #define si ...

  9. BeanDefinition的创建(BeanDefinitionHolder的创建)

    这个对另一篇章Bean Definition从加载.解析.处理.注册到BeanFactory的过程的扩展. Spring框架中BeanDefinition的继承结构. Spring框架中BeanDef ...

  10. 泛型和 Any 类型

    泛型和 Any 类型 这两个类型看起来很相似,但是一定要小心两者的区别.他们区别在于 Any 类型会避开类型的检查,所以尽量少用最好不用.泛型一方面很灵活一方面也很安全,下面举个例子感受下两者的区别: ...