题意



分析

二次剩余问题。

x,y相当于二次方程

\[x^2-bx+c=0 \mod{p}
\]

的两根。

摸意义下的二次方程仍然考虑判别式\(\Delta=b^2-4c\)。

它能开根的条件是\(\Delta=0\)或\(\Delta^{\frac{p-1}{2}}=1\)

若能开根,则根为\(\Delta^{\frac{p+1}{4}}\)

然后就是普通的解一元二次方程了。

代码

#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#include<string>
#include<vector>
#include<list>
#include<deque>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<bitset>
#include<algorithm>
#include<complex>
#include<cassert>
#define rg register
#define il inline
#define co const
#pragma GCC optimize ("O0")
using namespace std;
template<class T> il T read()
{
T data=0;
int w=1;
char ch=getchar();
while(!isdigit(ch))
{
if(ch=='-')
w=-1;
ch=getchar();
}
while(isdigit(ch))
data=10*data+ch-'0',ch=getchar();
return data*w;
}
template<class T> il T read(T&x)
{
return x=read<T>();
}
typedef long long ll;
const int INF=0x7fffffff; const int mod=1e9+7; int qpow(int x,int k)
{
int res=1;
while(k)
{
if(k&1)
res=(ll)res*x%mod;
x=(ll)x*x%mod,k>>=1;
}
return res;
} int main()
{
freopen("lanzhou.in","r",stdin);
freopen("lanzhou.out","w",stdout);
int T;
read(T);
while(T--)
{
int b=read<int>(),c=read<int>();
int d=((ll)b*b-(ll)4*c)%mod;
if(d<0)
{
d+=mod;
}
// cerr<<"d="<<d<<endl;
if(d!=0&&qpow(d,(mod-1)/2)!=1)
{
puts("-1 -1");
}
else
{
int r=qpow(d,(mod+1)/4);
assert((ll)r*r%mod==d);
int x=(ll)(b+r)*qpow(2,mod-2)%mod;
int y=(ll)(b-r)*qpow(2,mod-2)%mod;
if(x<0)
{
x+=mod;
}
if(y<0)
{
y+=mod;
}
if(x>y)
{
swap(x,y);
}
printf("%d %d\n",x,y);
assert(x<=y&&(x+y)%mod==b&&(ll)x*y%mod==c);
}
}
// fclose(stdin);
// fclose(stdout);
return 0;
}

test20181020 B君的第一题的更多相关文章

  1. test20181020 B君的第二题

    题意 分析 考场70分 一看就是裸的kmp,直接打上去. #include<cstdlib> #include<cstdio> #include<cmath> #i ...

  2. test20181017 B君的第一题

    题意 分析 考场做法 对p的幂打表发现,我们一定可以把x和y的二进制位从低到高依次调整成0. 具体而言,从0次幂开始每两个分为一组a,b,那么0,a,b,a+b组合中的一种可以将x,y的对应二进制位都 ...

  3. test20181018 B君的第一题

    题意 分析 考场爆零做法 考虑dp,用\(f(i,j,0/1)\)表示i及其子树中形成j个边连通块的方案数,其中i是否向外连边. \(O(n^3)\),转移方程太复杂就打挂了. #include< ...

  4. test20181016 B君的第一题

    题意 分析 考场爆零做法 考虑位数少的一定更小,高位小的一定更少. 然后计算一定位数下不同数字的个数,然后从高到低依次确定数位. 特例:如果确定的高位的后缀出现了x,那么要把x调整到后缀去,这样一定更 ...

  5. test20181019 B君的第一题

    题意 分析 考场做法同标解. 画图模拟分析发现,无论操作顺序怎样,操作数的奇偶性是不变的. 所以等同求出,以每点为根的操作数奇偶性. 用\(f(x)\)表示x及其子树中的边,包括x到它fa的边,将他们 ...

  6. [算法 笔记]2014年去哪儿网 开发笔试(续)第一题BUG修正

    上一篇的blog地址为:http://www.cnblogs.com/life91/p/3313868.html 这几天又参加了一个家公司的笔试题,在最后的编程题中竟然出现了去哪儿网开发的第一题,也就 ...

  7. 《学习OpenCV》练习题第五章第一题ab

    这道题是载入一幅带有有趣纹理的图像并用不同的模板(窗口,核)大小做高斯模糊(高斯平滑),然后比较用5*5大小的窗口平滑图像两次和用11*11大小的窗口平滑图像一次是否接近相同. 先说下我的做法,a部分 ...

  8. 《学习OpenCV》练习题第四章第一题b&c

    #include <highgui.h> #include <cv.h> #pragma comment (lib,"opencv_calib3d231d.lib&q ...

  9. 《学习OpenCV》练习题第四章第一题a

    #include <highgui.h> #include <cv.h> #pragma comment (lib,"opencv_calib3d231d.lib&q ...

随机推荐

  1. 从官网学习Node.js FS模块方法速查

    最新文档请查看仓库 https://github.com/wangduandu... 1. File System 所有文件操作提供同步和异步的两种方式,本笔记只记录异步的API 异步方式其最后一个参 ...

  2. 20145333 《网络对抗技术》 PC平台逆向破解

    20145333 <网络对抗技术> PC平台逆向破解 20145333 <网络对抗技术> PC平台逆向破解 Shellcode注入 基础知识 Shellcode实际是一段代码, ...

  3. 20145201李子璇 《网络对抗》 Web基础

    1.实验后回答问题 (1)什么是表单 它在网页中主要负责数据采集功能,通过用户提交的一些数据来建立网站管理者与浏览者之间的桥梁. 两个组成部分:①HTML源代码用于描述表单(比如域,标签和浏览者在页面 ...

  4. OpenCV/OpenCL/OpenGL区别

    OpenCV/OpenCL/OpenGL区别: OpenGL(全写Open Graphics Library)是个定义了一个跨编程语言.跨平台的应用程序接口(API)的规格,它用于生成二维.三维图像. ...

  5. Spring JPA中OneToOne和OneToMany用法

    Spring工程中,创建实体对象时,可以通过JPA的@Entity标识实体与数据库表的对应关系,@Column标识数据库字段.其中还有标识两个实体间关系的注解:@OneToOne.@OneToMany ...

  6. 51Nod 1737 配对(树的重心)

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1737 题意: 思路: 树的重心. 树的重心就是其所以子树的最大的子树结点 ...

  7. UI 交互

    动效设计 亮色优缺点 排版 原型图交互说明

  8. Android之自定义控件实现天气温度折线图和饼状图

    以前写了个天气的APP,最近把他更新了一个版本,就抽取其中的天气温度折现图这个功能写了这篇博客,来与大家分享,希望对你有所帮助. 效果如图: 代码: MainActivity.Java /**** * ...

  9. Linux命令详解-man

    man 命令提供有关主题的参考信息,例如命令.子例程和文件.man 命令提供由名称指定的对命令的单行描述.man 命令也提供所有命令的信息,这些命令的描述包含用户指定的关键字集合. 1.命令格式: m ...

  10. Coderforce-574C Bear and Poker(素数唯一分解定理)

    题目大意:给出n个数,问能不能通过让所有的数都乘以2的任意幂或乘以3的任意幂,使这n个数全都相等. 题目分析:最终n个数都是相等的,假设那个数为x,根据素数唯一分解定理,x能分解成m*2p3q.所以, ...