使用Tensorflow和MNIST识别自己手写的数字
#!/usr/bin/env python3
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True) import tensorflow as tf sess = tf.InteractiveSession() x = tf.placeholder(tf.float32, shape=[None, 784])
y_ = tf.placeholder(tf.float32, shape=[None, 10])
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10])) sess.run(tf.global_variables_initializer()) y = tf.matmul(x,W) + b cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y)) train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) for _ in range(1000):
batch = mnist.train.next_batch(100)
train_step.run(feed_dict={x: batch[0], y_: batch[1]})
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) print(accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels})) def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial) def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial) def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME') W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
x_image = tf.reshape(x, [-1,28,28,1])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1) W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2) W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10]) y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) saver = tf.train.Saver() # defaults to saving all variables sess.run(tf.global_variables_initializer())
for i in range(20000):
batch = mnist.train.next_batch(50)
if i%100 == 0:
train_accuracy = accuracy.eval(feed_dict={
x:batch[0], y_: batch[1], keep_prob: 1.0})
print("step %d, training accuracy %g"%(i, train_accuracy)) train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
saver.save(sess, 'fanlinglong/model.ckpt') print("test accuracy %g"%accuracy.eval(feed_dict={
x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
使用Tensorflow和MNIST识别自己手写的数字的更多相关文章
- TensorFlow下利用MNIST训练模型并识别自己手写的数字
最近一直在学习李宏毅老师的机器学习视频教程,学到和神经网络那一块知识的时候,我觉得单纯的学习理论知识过于枯燥,就想着自己动手实现一些简单的Demo,毕竟实践是检验真理的唯一标准!!!但是网上很多的与t ...
- 从一到二:利用mnist训练集生成的caffemodel对mnist测试集与自己手写的数字进行测试
通过从零到一的教程,我们已经得到了通过mnist训练集生成的caffemodel,主要包含下面四个文件: 接下来就可以利用模型进行测试了.关于测试方法按照上篇教程还是选择bat文件,当然python. ...
- 利用mnist训练集生成的caffemodel对mnist测试集与自己手写的数字进行测试
从一到二:利用mnist训练集生成的caffemodel对mnist测试集与自己手写的数字进行测试 通过从零到一的教程,我们已经得到了通过mnist训练集生成的caffemodel,主要包含下面四个文 ...
- 【TensorFlow篇】--Tensorflow框架实现SoftMax模型识别手写数字集
一.前述 本文讲述用Tensorflow框架实现SoftMax模型识别手写数字集,来实现多分类. 同时对模型的保存和恢复做下示例. 二.具体原理 代码一:实现代码 #!/usr/bin/python ...
- 第二节,TensorFlow 使用前馈神经网络实现手写数字识别
一 感知器 感知器学习笔记:https://blog.csdn.net/liyuanbhu/article/details/51622695 感知器(Perceptron)是二分类的线性分类模型,其输 ...
- TensorFlow下利用MNIST训练模型识别手写数字
本文将参考TensorFlow中文社区官方文档使用mnist数据集训练一个多层卷积神经网络(LeNet5网络),并利用所训练的模型识别自己手写数字. 训练MNIST数据集,并保存训练模型 # Pyth ...
- 利用TensorFlow识别手写的数字---基于Softmax回归
1 MNIST数据集 MNIST数据集主要由一些手写数字的图片和相应的标签组成,图片一共有10类,分别对应从0-9,共10个阿拉伯数字.原始的MNIST数据库一共包含下面4个文件,见下表. 训练图像一 ...
- keras与卷积神经网络(CNN)实现识别minist手写数字
在本篇博文当中,笔者采用了卷积神经网络来对手写数字进行识别,采用的神经网络的结构是:输入图片——卷积层——池化层——卷积层——池化层——卷积层——池化层——Flatten层——全连接层(64个神经元) ...
- 吴裕雄 python 神经网络——TensorFlow实现AlexNet模型处理手写数字识别MNIST数据集
import tensorflow as tf # 输入数据 from tensorflow.examples.tutorials.mnist import input_data mnist = in ...
随机推荐
- 使用wblockCloneObjects从后台读取dwg文件复制实体到当前数据库
AcDbDatabase *pNewDb=new AcDbDatabase(Adesk::kFalse); if (pNewDb == NULL) { return; } Acad::ErrorSta ...
- 初探APT 攻击
作者:joe 所属团队:Arctic Shell 本文编写参考: https://www.freebuf.com/vuls/175280.html https://www.freebuf. ...
- BruteXSS(汉化版)
BruteXSS是一个非常强大和快速的跨站点脚本暴力注入.它用于暴力注入一个参数.该BruteXSS从指定的词库加载多种有效载荷进行注入并且使用指定的载荷和扫描检查这些参数很容易受到XSS漏洞.得益于 ...
- 解决org.apache.lucene.store.AlreadyClosedException: this Directory is closed
在Lucene中,关闭一个IndexWriter时抛出AlreadyClosedException异常: org.apache.lucene.store.AlreadyClosedException: ...
- [SQL] 简单新建(create)删除(drop\delete)权限(grant/revoke)修改(set\update)
一.前言 说起来 数据库(Structured Query Language),本站写过很多类似文章. 如: Mysql创建.删除用户 phpMyAdmin 登陆需要密码 记一次裸迁 MySQL 经历 ...
- 关于字典的几个类--defaultdict,OrderedDict, zip()
一. 1个键对应多个值 比如:d = {'a' : [1, 2, 3], 'b' : [4, 5]},可以使用 collections 模块中的 defaultdict 来构造这样的字典 from ...
- MySql环境变量配置
配置环境变量 前面步骤完成后安装好MySQL,为MySQL配置环境变量.MySQL默认安装在C:\Program Files下. 1)新建MYSQL_HOME变量,并配置:C:\Program Fil ...
- allure报告定制(pytest+jenkins)
环境及安装可查看 pytest+jenkins安装+allure导出报告 要让allure报告更漂亮,更直观,需要在脚本中写入allure特性 一开始allure调用step().story().fe ...
- python bytes和str之间的转换
1 # bytes object 2 b = b"example" 3 4 # str object 5 s = "example" 6 7 # str to ...
- Vue局部注册 或者全局注册 组件时,组件定义要用 分隔命名,用驼峰命名是不生效的
Vue.component('all-canuse',{ props:['message'], template:'<div>{{message}}</div>' }) 像这样