POJ 1410 Intersection (线段和矩形相交)
题目:
Description
An example:
line: start point: (4,9)
end point: (11,2)
rectangle: left-top: (1,5)
right-bottom: (7,1)
Figure 1: Line segment does not intersect rectangle
The line is said to intersect the rectangle if the line and the rectangle have at least one point in common. The rectangle consists of four straight lines and the area in between. Although all input values are integer numbers, valid intersection points do not have to lay on the integer grid.
Input
xstart ystart xend yend xleft ytop xright ybottom
where (xstart, ystart) is the start and (xend, yend) the end point of the line and (xleft, ytop) the top left and (xright, ybottom) the bottom right corner of the rectangle. The eight numbers are separated by a blank. The terms top left and bottom right do not imply any ordering of coordinates.
Output
Sample Input
1
4 9 11 2 1 5 7 1
Sample Output
F
题意:给出一条线段和一个矩形 判断两者是否相交
思路:就直接暴力判断 但是要考虑一些边界情况 曾经在判断线段是否在矩形内的时候莫名其妙wa
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm> using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int inf=0x3f3f3f3f;
const double eps=1e-;
int n;
double x,y,xx,yy,tx,ty,txx,tyy; int dcmp(double x){
if(fabs(x)<eps) return ;
if(x<) return -;
else return ;
} struct Point{
double x,y;
Point(){}
Point(double _x,double _y){
x=_x,y=_y;
}
Point operator + (const Point &b) const{
return Point(x+b.x,y+b.y);
}
Point operator - (const Point &b) const{
return Point(x-b.x,y-b.y);
}
double operator * (const Point &b) const{
return x*b.x+y*b.y;
}
double operator ^ (const Point &b) const{
return x*b.y-y*b.x;
}
}; struct Line{
Point s,e;
Line(){}
Line(Point _s,Point _e){
s=_s,e=_e;
}
}; bool inter(Line l1,Line l2){
return
max(l1.s.x,l1.e.x)>=min(l2.s.x,l2.e.x) &&
max(l2.s.x,l2.e.x)>=min(l1.s.x,l1.e.x) &&
max(l1.s.y,l1.e.y)>=min(l2.s.y,l2.e.y) &&
max(l2.s.y,l2.e.y)>=min(l1.s.y,l1.e.y) &&
dcmp((l2.s-l1.e)^(l1.s-l1.e))*dcmp((l2.e-l1.e)^(l1.s-l1.e))<= &&
dcmp((l1.s-l2.e)^(l2.s-l2.e))*dcmp((l1.e-l2.e)^(l2.s-l2.e))<=;
} int main(){
scanf("%d",&n);
while(n--){
scanf("%lf%lf%lf%lf%lf%lf%lf%lf",&x,&y,&xx,&yy,&tx,&ty,&txx,&tyy);
double xl=min(tx,txx);
double xr=max(tx,txx);
double ydown=min(ty,tyy);
double yup=max(ty,tyy);
Line line=Line(Point(x,y),Point(xx,yy));
Line line1=Line(Point(tx,ty),Point(tx,tyy));
Line line2=Line(Point(tx,ty),Point(txx,ty));
Line line3=Line(Point(txx,ty),Point(txx,tyy));
Line line4=Line(Point(txx,tyy),Point(tx,tyy));
if(inter(line,line1) || inter(line,line2) || inter(line,line3) || inter(line,line4) || (max(x,xx)<xr && max(y,yy)<yup && min(x,xx)>xl && min(y,yy)>ydown)) printf("T\n");
else printf("F\n");
}
return ;
}
POJ 1410 Intersection (线段和矩形相交)的更多相关文章
- POJ 1410--Intersection(判断线段和矩形相交)
Intersection Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 16322 Accepted: 4213 Des ...
- poj 1410 Intersection 线段相交
题目链接 题意 判断线段和矩形是否有交点(矩形的范围是四条边及内部). 思路 判断线段和矩形的四条边有无交点 && 线段是否在矩形内. 注意第二个条件. Code #include & ...
- POJ 1410 判断线段与矩形交点或在矩形内
这个题目要注意的是:给出的矩形坐标不一定是按照左上,右下这个顺序的 #include <iostream> #include <cstdio> #include <cst ...
- 线段和矩形相交 POJ 1410
// 线段和矩形相交 POJ 1410 // #include <bits/stdc++.h> #include <iostream> #include <cstdio& ...
- POJ 1410 Intersection(线段相交&&推断点在矩形内&&坑爹)
Intersection 大意:给你一条线段,给你一个矩形,问是否相交. 相交:线段全然在矩形内部算相交:线段与矩形随意一条边不规范相交算相交. 思路:知道详细的相交规则之后题事实上是不难的,可是还有 ...
- poj 1410 Intersection (判断线段与矩形相交 判线段相交)
题目链接 Intersection Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 12040 Accepted: 312 ...
- [POJ 1410] Intersection(线段与矩形交)
题目链接:http://poj.org/problem?id=1410 Intersection Time Limit: 1000MS Memory Limit: 10000K Total Sub ...
- POJ 1410 Intersection(判断线段交和点在矩形内)
Intersection Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 9996 Accepted: 2632 Desc ...
- POJ 1410 Intersection --几何,线段相交
题意: 给一条线段,和一个矩形,问线段是否与矩形相交或在矩形内. 解法: 判断是否在矩形内,如果不在,判断与四条边是否相交即可.这题让我发现自己的线段相交函数有错误的地方,原来我写的线段相交函数就是单 ...
- POJ 1410 Intersection (计算几何)
题目链接:POJ 1410 Description You are to write a program that has to decide whether a given line segment ...
随机推荐
- .NET Core 项目指定SDK版本
一. 版本里的坑 自从 .NET Core 2.1.0版本发布以后,近几个月微软又进行了几次小版本的发布,可见 .NET Core 是一门生命力非常活跃的技术.经过一段时间的实践,目前做 ASP.NE ...
- HTML60秒倒计时
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- C语言随机点名程序
#include "stdio.h"#include "stdlib.h"#include "time.h"#include "w ...
- Git入门—创建项目
Git入门—创建项目 注:win10系统下 打开Git Bash,进入存放仓库的目录 创建 初始化git init,该命令执行完后会在当前目录生成一个 .git 目录. 所有 Git 需要的数据和资源 ...
- centos 6.8 nginx+mysql+php
1:查看环境: [root@123 /]# cat /etc/redhat-release CentOS release 6.8 (Final) 2:关掉防火墙 [root@123 /]# chkco ...
- 百度地图IP定位,点击地图添加marker
<html> <head> <meta http-equiv="Content-Type" content="text/html; char ...
- python+opencv读取视频,调用摄像头
引用 import cv2 import numpy 创建摄像头对象 cap = cv2.VideoCapture("videoTest/test1.mp4") #参数为视频文件目 ...
- 【转】How to create a new user and grant permissions in MySQL
MySQL is one of the most popular database management systems. In this tutorial we will cover the ste ...
- 使用 Python 爬取网页数据
1. 使用 urllib.request 获取网页 urllib 是 Python 內建的 HTTP 库, 使用 urllib 可以只需要很简单的步骤就能高效采集数据; 配合 Beautiful 等 ...
- webpack学习记录-认识loader(二)
Loader 就像是一个翻译员,能把源文件经过转化后输出新的结果,并且一个文件还可以链式的经过多个翻译员翻译. loader参考文章:https://webpack.docschina.org/loa ...