题目:

Description

You are to write a program that has to decide whether a given line segment intersects a given rectangle.

An example: 
line: start point: (4,9) 
end point: (11,2) 
rectangle: left-top: (1,5) 
right-bottom: (7,1)

 
Figure 1: Line segment does not intersect rectangle

The line is said to intersect the rectangle if the line and the rectangle have at least one point in common. The rectangle consists of four straight lines and the area in between. Although all input values are integer numbers, valid intersection points do not have to lay on the integer grid.

Input

The input consists of n test cases. The first line of the input file contains the number n. Each following line contains one test case of the format: 
xstart ystart xend yend xleft ytop xright ybottom

where (xstart, ystart) is the start and (xend, yend) the end point of the line and (xleft, ytop) the top left and (xright, ybottom) the bottom right corner of the rectangle. The eight numbers are separated by a blank. The terms top left and bottom right do not imply any ordering of coordinates.

Output

For each test case in the input file, the output file should contain a line consisting either of the letter "T" if the line segment intersects the rectangle or the letter "F" if the line segment does not intersect the rectangle.

Sample Input

1
4 9 11 2 1 5 7 1

Sample Output

F

题意:给出一条线段和一个矩形 判断两者是否相交
思路:就直接暴力判断 但是要考虑一些边界情况 曾经在判断线段是否在矩形内的时候莫名其妙wa

代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm> using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int inf=0x3f3f3f3f;
const double eps=1e-;
int n;
double x,y,xx,yy,tx,ty,txx,tyy; int dcmp(double x){
if(fabs(x)<eps) return ;
if(x<) return -;
else return ;
} struct Point{
double x,y;
Point(){}
Point(double _x,double _y){
x=_x,y=_y;
}
Point operator + (const Point &b) const{
return Point(x+b.x,y+b.y);
}
Point operator - (const Point &b) const{
return Point(x-b.x,y-b.y);
}
double operator * (const Point &b) const{
return x*b.x+y*b.y;
}
double operator ^ (const Point &b) const{
return x*b.y-y*b.x;
}
}; struct Line{
Point s,e;
Line(){}
Line(Point _s,Point _e){
s=_s,e=_e;
}
}; bool inter(Line l1,Line l2){
return
max(l1.s.x,l1.e.x)>=min(l2.s.x,l2.e.x) &&
max(l2.s.x,l2.e.x)>=min(l1.s.x,l1.e.x) &&
max(l1.s.y,l1.e.y)>=min(l2.s.y,l2.e.y) &&
max(l2.s.y,l2.e.y)>=min(l1.s.y,l1.e.y) &&
dcmp((l2.s-l1.e)^(l1.s-l1.e))*dcmp((l2.e-l1.e)^(l1.s-l1.e))<= &&
dcmp((l1.s-l2.e)^(l2.s-l2.e))*dcmp((l1.e-l2.e)^(l2.s-l2.e))<=;
} int main(){
scanf("%d",&n);
while(n--){
scanf("%lf%lf%lf%lf%lf%lf%lf%lf",&x,&y,&xx,&yy,&tx,&ty,&txx,&tyy);
double xl=min(tx,txx);
double xr=max(tx,txx);
double ydown=min(ty,tyy);
double yup=max(ty,tyy);
Line line=Line(Point(x,y),Point(xx,yy));
Line line1=Line(Point(tx,ty),Point(tx,tyy));
Line line2=Line(Point(tx,ty),Point(txx,ty));
Line line3=Line(Point(txx,ty),Point(txx,tyy));
Line line4=Line(Point(txx,tyy),Point(tx,tyy));
if(inter(line,line1) || inter(line,line2) || inter(line,line3) || inter(line,line4) || (max(x,xx)<xr && max(y,yy)<yup && min(x,xx)>xl && min(y,yy)>ydown)) printf("T\n");
else printf("F\n");
}
return ;
}

 

POJ 1410 Intersection (线段和矩形相交)的更多相关文章

  1. POJ 1410--Intersection(判断线段和矩形相交)

    Intersection Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 16322   Accepted: 4213 Des ...

  2. poj 1410 Intersection 线段相交

    题目链接 题意 判断线段和矩形是否有交点(矩形的范围是四条边及内部). 思路 判断线段和矩形的四条边有无交点 && 线段是否在矩形内. 注意第二个条件. Code #include & ...

  3. POJ 1410 判断线段与矩形交点或在矩形内

    这个题目要注意的是:给出的矩形坐标不一定是按照左上,右下这个顺序的 #include <iostream> #include <cstdio> #include <cst ...

  4. 线段和矩形相交 POJ 1410

    // 线段和矩形相交 POJ 1410 // #include <bits/stdc++.h> #include <iostream> #include <cstdio& ...

  5. POJ 1410 Intersection(线段相交&amp;&amp;推断点在矩形内&amp;&amp;坑爹)

    Intersection 大意:给你一条线段,给你一个矩形,问是否相交. 相交:线段全然在矩形内部算相交:线段与矩形随意一条边不规范相交算相交. 思路:知道详细的相交规则之后题事实上是不难的,可是还有 ...

  6. poj 1410 Intersection (判断线段与矩形相交 判线段相交)

    题目链接 Intersection Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 12040   Accepted: 312 ...

  7. [POJ 1410] Intersection(线段与矩形交)

    题目链接:http://poj.org/problem?id=1410 Intersection Time Limit: 1000MS   Memory Limit: 10000K Total Sub ...

  8. POJ 1410 Intersection(判断线段交和点在矩形内)

    Intersection Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9996   Accepted: 2632 Desc ...

  9. POJ 1410 Intersection --几何,线段相交

    题意: 给一条线段,和一个矩形,问线段是否与矩形相交或在矩形内. 解法: 判断是否在矩形内,如果不在,判断与四条边是否相交即可.这题让我发现自己的线段相交函数有错误的地方,原来我写的线段相交函数就是单 ...

  10. POJ 1410 Intersection (计算几何)

    题目链接:POJ 1410 Description You are to write a program that has to decide whether a given line segment ...

随机推荐

  1. [Oracle维护工程师手记]Data Guard Broker中改属性是否需要两侧分别执行?

    Data Guard Broker中改属性是否需要两侧分别执行? Data Guard Broker有一些属性,可以通过 show configuration 看到.我有时会想,这些个属性,是否是分别 ...

  2. Ubuntu安装mysql之后,编译找不到头文件

    解决Ubuntu安装mysql之后找不到mysql.h问题   安装: sudo apt-get install libmysqlclient-dev   编译: gcc test.c -o test ...

  3. Educational Codeforces Round 62 (Rated for Div. 2) - C Playlist

    当时题意看错了...不过大致思路是对的,唯一没有想到的就是用优先队列搞这个东西,真是不该啊... 题意大概就是,有N首歌,N首歌有两个东西,一个是长度Ti,一个是美丽值Bi,你最多可以选择K首歌, 这 ...

  4. 如何用java发送Http的post请求,并传递参数

    书写方法,请参考以下代码: package utils; import java.io.BufferedReader; import java.io.IOException; import java. ...

  5. PHP整洁之道

    摘录自 Robert C. Martin的Clean Code 书中的软件工程师的原则 ,适用于PHP. 这不是风格指南. 这是一个关于开发可读.可复用并且可重构的PHP软件指南. 并不是这里所有的原 ...

  6. Flutter之Decoration(边框、圆角、阴影、形状、渐变、背景图像等)

    1 继续关系: BoxDecoration:实现边框.圆角.阴影.形状.渐变.背景图像 ShapeDecoration:实现四个边分别指定颜色和宽度.底部线.矩形边色.圆形边色.体育场(竖向椭圆).  ...

  7. Shell命令-文件及目录操作之ls、cd

    文件及目录操作 - ls.cd 1.ls:列出目录的内容及其内容属性信息 ls命令的功能说明 ls命令用于列出目录的内容及其内容属性信息. ls命令的语法格式 ls [OPTION]... [FILE ...

  8. DAY17、常用模块

    一.time模块 1.时间戳(timestamp):time.time()     #可以作为数据的唯一标识   是相对于1970-1-1-0:0:0时间插值 2.延迟线程的运行:time.sleep ...

  9. Python——Flask框架——电子邮件

    一.框架(Flask-Mail) 安装 : pip install flask-mail 二.SMTP服务器的配置 配置 默认值 说明 MAIL_SERVER locallhost 电子邮件服务器的主 ...

  10. Red Hat Enterprise Linux AS4, C++ OCCI connect Oracle 9i

    前提是已经安装好Oracle 9i. 1. 下载对应的ORACLE client安装. http://www.oracle.com/technetwork/database/features/inst ...