• 根据任务,构建ComputationRequst
  • 编译ComputationRequst,获取NnetComputation

    std::shared_ptr<const NnetComputation> computation = compiler_.Compile(request);

    • 创建计算——CreateComputation

      compiler.CreateComputation(opts, computation);

      • 从输出节点开始逐步向前计算依赖关系

        ComputationGraphBuilder builder(nnet_, &graph_);

        builder.Compute(*(requests_[segment]));

        每次向前深入一层,并计算所有Cindexes的依赖关系

        BuildGraphOneIter();

        对其中的每个Cindex,若需要计算其依赖:

        AddDependencies(cindex_id);

        • 若为kDescriptor,desc.GetDependencies(index, &input_cindexes);
        • 若为kComponent,component->GetInputIndexes(request_->misc_info, index, &input_indexes);
        • 若为kDimRange,input_cindexes[0] = Cindex(node.u.node_index, index);
        • 若为kInput,不需要依赖
      • 检查是否所有的输出都是可计算的

        if (!builder.AllOutputsAreComputable())

      • 将数据与运算组织为计算步

        对每个chunk中Cindexes根据不同网络层切分为phases,并以chunk为单位进行处理

        steps_computer.ComputeForSegment(*(requests_[segment]),phases_per_segment[segment]);

        将phases以节点为单位切分为sub-phases,并以sub-phases为单位进行处理

        ProcessSubPhase(request, sub_phases[j]);

        若sub-phases对于节点类型为:

        component-node:ProcessComponentStep(sub_phase);

        kSimpleComponent:除索引数-1外,将step复制为input_step

        else:从graph_->dependencies[c]获取依赖并插入到input_step中

        input-node:ProcessInputOrOutputStep(request, false, sub_phase);

        output-node:ProcessInputOrOutputStep(request, true, sub_phase);

        dim-range-node:ProcessDimRangeSubPhase(sub_phase);

    • 优化计算——Optimize

      Optimize(opt_config_, nnet_,

      MaxOutputTimeInRequest(request),

      computation);

  • 根据NnetComputation构建NnetComputer

    NnetComputer computer(opts_.compute_config, *computation,

    nnet_, nnet_to_update);

  • 运行NnetComputer

    computer.Run();

    对NnetComputation中所有Command迭代地运行

    ExecuteCommand();

    kPropagate:void *memo = component->Propagate(indexes, input, &output);

    kBackprop:component->Backprop(debug_str.str(), indexes,

    in_value, out_value, out_deriv,

    memo, upd_component,

    c.arg6 == 0 ? NULL : &in_deriv);

    ...

  • 从NnetComputer获取输出

    computer.GetOutputDestructive("output", &cu_output);

Kaldi nnet3的前向计算的更多相关文章

  1. Faster-rnnlm代码分析3 - EvaluateLM(前向计算ForwardPropagate)

    先采用一个简单的输入文本做测试 [root@cq01-forum-rstree01.cq01.baidu.com rnnlm]# pwd /home/users/chenghuige/rsc/app/ ...

  2. Xvector in Kaldi nnet3

    Xvector nnet Training of Xvector nnet Xvector nnet in Kaldi     Statistics Extraction Layer in Kaldi ...

  3. BP原理 - 前向计算与反向传播实例

    Outline 前向计算 反向传播 很多事情不是需要聪明一点,而是需要耐心一点,踏下心来认真看真的很简单的. 假设有这样一个网络层: 第一层是输入层,包含两个神经元i1 i2和截距b1: 第二层是隐含 ...

  4. [源码解析] PyTorch 流水线并行实现 (4)--前向计算

    [源码解析] PyTorch 流水线并行实现 (4)--前向计算 目录 [源码解析] PyTorch 流水线并行实现 (4)--前向计算 0x00 摘要 0x01 论文 1.1 引论 1.1.1 数据 ...

  5. Kaldi nnet3的fastlstm与标准LSTM

    标准LSTM:             与标准LSTM相比,Kaldi的fastlstm对相同或类似的矩阵运算进行了合并.     # Component specific to 'projected ...

  6. 关于入门深度学习mnist数据集前向计算的记录

    import osimport lr as lrimport tensorflow as tffrom pyspark.sql.functions import stddevfrom tensorfl ...

  7. [图解tensorflow源码] MatMul 矩阵乘积运算 (前向计算,反向梯度计算)

  8. [tensorflow源码分析] Conv2d卷积运算 (前向计算,反向梯度计算)

  9. 对Kaldi nnet3进行奇异值分解(SVD)以减小模型大小

    用处 基于SVD实现模型压缩以适配低功耗平台     根据nnet3bin/nnet3-copy,nnet3-copy或nnet3-am-copy的"--edits-config" ...

随机推荐

  1. 前端学习-基础部分-css(二)

    开始今日份整理,今日主要是CSS中很重要的一部分,就是盒模型,浮动,定位属性 1.盒模型 1.1 特性: 当对一个文档(网页)进行布局的时候,浏览器渲染引擎会根据CSS-Box模型(盒子模型)将所有元 ...

  2. .NET CORE微服务中CONSUL的相关使用

    .NET CORE微服务中CONSUL的相关使用 1.consul在微服务中的作用 consul主要做三件事:1.提供服务到ip的注册 2.提供ip到服务地址的列表查询 3.对提供服务方做健康检查(定 ...

  3. 通过Excel生成PowerDesigner表结构设计

    说明:近期做部分表结构设计,在word里设计调整好了,需要整理到PowerDesigner中,但是手工录入太麻烦. 找了个工具(地址:http://www.cnblogs.com/hwaggLee/p ...

  4. IDEA+快捷键

    格式化代码:ctrl+alt+L IDEA快捷键管理:https://blog.csdn.net/h8178/article/details/78328097  (duplicate:为复制上一行)

  5. python小白——进阶之路——day4天-———流程控制while if循环

    # ### 代码块: 以冒号作为开始,用缩进来划分作用域,这个整体叫做代码块 if 5 == 5: print(1) print(2) # 注意点: 要么全部使用4个空格,要么全部使用1个缩进 ,这样 ...

  6. PS制作黑暗墙面上的漂亮霓虹文字

    一.用ps软件打开砖墙背景素材. 二.复制一层,混合模式改为“正片叠底”,不透明度50%. 三.新建色相/饱和度调整图层,设置如下.打造夜间的气氛. 四.新建一个空白图层,设置前景色黑色.背景色白色, ...

  7. idea注册码到期,破解idea

    http://idea.lanyus.com/    

  8. CodeForces 1151C Problem for Nazar

    题目链接:http://codeforces.com/problemset/problem/1151/C 题目大意: 有一个只存奇数的集合A = {1, 3, 5……2*n - 1,……},和只存偶数 ...

  9. Python——序列化模块

    #json 模式 1.dumps.loads  方法 针对内存 dic = {'k1':'v1'} #转换成json import json str_d = json.dumps(dic) #序列化 ...

  10. 如何从官网下载 Google Chrome 离线安装包

    1.打开 Chrome 浏览器主页:http://www.google.cn/chrome 2.地址栏最后的网址是这样的:http://www.google.cn/chrome/browser/des ...