题意:求n个点有向图其中SCC是一个的方案数

考虑求出若干个不连通的每个连通块都是SCC方案数然后再怎么做一做。(但是这里不能用Ln,因为推不出来)

设$f_n$为答案,

$g_n$为n个点的有向图,分成若干个连通块,每个连通块都是一个SCC,且当连通块大小为奇数时候贡献1系数,偶数时候贡献-1系数。(这里把系数放进去可以避免再来一个函数的麻烦!)

$h_n$表示n个点有向图个数$h_n=2^{n*(n-1)}$

$h_n=\sum_{i=1}^nC(n,i)\times g(i)\times 2^{n\times(n-i)}\times h(n-i)$

$g_n=f_n-\sum_{i=1}^{n-1}C(n-1,i-1)\times g(n-i)$

然后把C拆开,变成EGF,$2^{n\times(n-i)}$可以用之前套路处理COGS 2353 2355 2356 2358 有标号的DAG计数

即可得到答案

COGS 2396 2397 [HZOI 2015]有标号的强连通图计数的更多相关文章

  1. cogs [HZOI 2015]有标号的二分图计数

    题目分析 n个点的二分染色图计数 很显然的一个式子 \[ \sum_{i=0}^n\binom{n}{i}2^{i(n-i)} \] 很容易把\(2^{i(n-i)}\)拆成卷积形式,前面讲过,不再赘 ...

  2. cogs 2355. [HZOI 2015] 有标号的DAG计数 II

    题目分析 来自2013年王迪的论文<浅谈容斥原理> 设\(f_{n,S}\)表示n个节点,入度为0的点集恰好为S的方案数. 设\(g_{n,S}\)表示n个节点,入度为0的点集至少为S的方 ...

  3. COGS 2353 2355 2356 2358 有标号的DAG计数

    不用连通 枚举入度为0的一层 卷积 发现有式子: 由$n^2-i^2-(n-i)^2=2*i*(n-i)$ 可得$2^{i*(n-i)}=\frac{{\sqrt 2}^{(n^2)}}{{\sqrt ...

  4. 【题解】有标号的DAG计数4

    [HZOI 2015] 有标号的DAG计数 IV 我们已经知道了\(f_i\)表示不一定需要联通的\(i\)节点的dag方案,考虑合并 参考[题解]P4841 城市规划(指数型母函数+多项式Ln),然 ...

  5. 【题解】有标号的DAG计数3

    [HZOI 2015] 有标号的DAG计数 III 我们已经知道了\(f_i\)表示不一定需要联通的\(i\)节点的dag方案,考虑合并 参考[题解]P4841 城市规划(指数型母函数+多项式Ln), ...

  6. 【题解】有标号的DAG计数2

    [HZOI 2015] 有标号的DAG计数 II \(I\)中DP只有一个数组, \[ dp_i=\sum{i\choose j}2^{j(i-j)}dp_{i-j}(-1)^{j+1} \] 不会. ...

  7. 【题解】有标号的DAG计数1

    [HZOI 2015] 有标号的DAG计数 I 设\(f_i\)为\(i\)个点时的DAG图,(不必联通) 考虑如何转移,由于一个DAG必然有至少一个出度为\(0\)的点,所以我们钦定多少个出度为\( ...

  8. COGS 2392 2393 2395 有标号的二分图计数

    有黑白关系: 枚举左部点(黑色点),然后$2^{i*(n-i)}$处理方法同:COGS 2353 2355 2356 2358 有标号的DAG计数 无关系: 发现,假设$f(i)$是一个连通块,对于一 ...

  9. COGS 有标号的DAG/强连通图计数

    COGS索引 一堆神仙容斥+多项式-- 有标号的DAG计数 I 考虑\(O(n^2)\)做法:设\(f_i\)表示总共有\(i\)个点的DAG数量,转移考虑枚举DAG上所有出度为\(0\)的点,剩下的 ...

随机推荐

  1. ADB和Fastboot最新版的谷歌官方下载链接

    ADB和Fastboot for Windows https://dl.google.com/android/repository/platform-tools-latest-windows.zip ...

  2. UDK脚本函数性能工具

    数据采集 游戏中使用控制台命令来采集脚本函数性能数据 ProfileGame Start  // 开始捕获性能数据 ProfileGame Stop  // 停止捕获并保存数据文件,并保存到[Game ...

  3. ASP.NET Zero--开发指南

    ASP.NET Zero--开发指南(Lyhcee 译) 01. 前期介绍 02. 前期要求 03. 解决方案结构(层) 04. 前端应用程序 05. 后端应用程序 06.WEB.HOST应用程序 0 ...

  4. 前后端分离djangorestframework—— 接入第三方的验证码平台

    关于验证码部分,在我这篇文章里说的挺详细的了:Python高级应用(3)—— 为你的项目添加验证码 这里还是再给一个前后端分离的实例,因为极验官网给的是用session作为验证的,而我们做前后端分离的 ...

  5. python3操作MySQL数据库,一次插入多条记录的方法

    这里提供一个思路,使用字符串拼接的方法,将sql语句拼接出来,然后去执行: l = ["] s = '-' print(s.join(l))

  6. Jenkins系统监测(转)

    Jenkins系统监测   Jenkins 是一个开源项目,提供了一种易于使用的持续集成系统,使开发者从繁杂的集成中解脱出来,专注于更为重要的业务逻辑实现上.同时 Jenkins 能实施监控集成中存在 ...

  7. python--多继承

    多继承 子类可以拥有多个父类,继承所有父类的属性和方法 class 子类名(父类名1,父类名2): 多个父类直接不要有重名的方法和属性,子类对象调用,没法确认.

  8. Think_in_java_4th(并发学习一)

    Java的并发是在顺序语言的基础上提供对线程的支持的. 并发能够更加有效的执行我们的代码,也就是更加合理的应用CPU资源. 并发程序往往CPU和内存使用率,要高于同等的非并发程序. 下面就用Think ...

  9. SQLServer之触发器简介

    触发器定义 触发器是数据库服务器中发生事件时自动执行的一种特殊存储过程.SQLServer允许为任何特定语句创建多个触发器.它的执行不是由程序调用,也不是手工启动,而是由事件来触发,当对数据库进行操作 ...

  10. formatter的使用

    1.目的 如图所示,实现行编辑栏中的编辑删除,以及在时间建议中显示上中下旬 可参考easyui官方文档中所写的关于datagrid列属性:http://www.jeasyui.net/plugins/ ...