[再寄小读者之数学篇](2014-06-23 Hardy 空间、BMO空间与 Triebel-Lizorkin 空间)
$$\bex 0<p<\infty\ra H_p=\dot F^0_{p,2};\quad BMO=\dot F^0_{\infty,2}. \eex$$ see [H. Triebel, Theory of function spaces I, Birkh\"auser,Basel, 1983] Page 244.
[再寄小读者之数学篇](2014-06-23 Hardy 空间、BMO空间与 Triebel-Lizorkin 空间)的更多相关文章
- [再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)
$$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{ ...
- [再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)
(2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\b ...
- [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])
设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...
- [再寄小读者之数学篇](2014-06-26 Besov space estimates)
(1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...
- [再寄小读者之数学篇](2014-06-23 Bernstein's inequality)
$$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq ...
- [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)
For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...
- [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)
设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...
- [再寄小读者之数学篇](2014-04-08 from 1297503521@qq.com $\sin x-x\cos x=0$ 的根的估计)
(2014-04-08 from 1297503521@qq.com) 设方程 $\sin x-x\cos x=0$ 在 $(0,+\infty)$ 中的第 $n$ 个解为 $x_n$. 证明: $$ ...
- [再寄小读者之数学篇](2014-12-04 $\left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0.$)
试证: $$\bex \left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0. \eex$$ 证明 (from Hanssch ...
- [再寄小读者之数学篇](2014-11-26 广义 Schur 分解定理)
设 $A,B\in \bbR^{n\times n}$ 的特征值都是实数, 则存在正交阵 $P,Q$ 使得 $PAQ$, $PBQ$ 为上三角阵.
随机推荐
- 面向对象___str__和__repr__
老师的博客关于此知识点 http://www.cnblogs.com/Eva-J/articles/7351812.html#_label7 __str__和__repr__ 改变对象的字符串显示__ ...
- localStorage和sessionStorage数据存储
var arr=[]; for(var i=0;i<4;i++){ arr[i]=i+i; } console.log(arr.toString()); //将json数据转化为字符串 var ...
- jquery中数组对象下面的属性名名是动态的如何获取
<script> let normalListData = []; function temp() { for (var i = 0; i < 10; i++) { let rowC ...
- wangEditor的使用
wangEditor的使用 第一步,将其下载,并引入项目中. 第二步,引入js <script type="text/javascript" src="/plugi ...
- 基于 HTML5 的工业互联网云平台监控机房 U 位
前言 机柜 U 位管理是一项突破性创新技术--继承了 RFID 标签(电子标签)的优点的同时,完全解决了 RFID 技术(非接触式的自动识别技术)在机房 U 位资产监控场应用景中的四大缺陷,采用工业互 ...
- Linux 字符编码 查看与转换
Linux 查看文件编码格式 Vim 查看文件编码 set fileencoding // 即可显示文件编码格式 若想解决Vim查看文件乱码问题, 可以在 .vimrc 文件添加 set encodi ...
- pyspider常见错误
安装完爬虫框架pyspider之后,使用pyspider all 命令,可能会出现以下错误: - Deprecated option 'domaincontroller': use 'http_aut ...
- D. The Beatles
链接 [https://codeforces.com/contest/1143/problem/D] 题意 就是有nkcity,n个面包店 第一个面包店在1city,第x个在(x-1)k+1city ...
- Oracle的表被锁后的恢复
运行下列SQL,找出数据库的serial#,执行结果如下图所示 SELECT T2.USERNAME, T2.SID, T2.SERIAL#, T2.LOGON_TIME FROM V$LOCKE ...
- docker下载镜像received unexpected Http status:500 Internal Server Error
解决办法 1.就是网上说的 关闭selLinue ,但是对我就没用 2.就是不使用镜像加速 ,但是出现连接超时 3.就是加上具体版本号 结果就成功了 [root@localhost ~]# docke ...