【转载请注明出处】http://www.cnblogs.com/mashiqi

2017/12/16

有时我们需要对PDEs中的各项进行变量替换,比如把$\frac{\text{d}}{\text{d}x} f(x)$换成$\frac{\text{d}}{\text{d}y}g(y)$(其中$f(x)=g(y)$)。比如我想把$x$换成$\frac{1}{x}$,那么我可以令$y = \frac{1}{x}$、令$g(y) = f(x)$,然后用$g$对$y$的各阶导数$g^{(n)}(y)$来表示$f^{(n)}(x)$。那么我们可以使用以下语句:

(* Example 1 *)
y[x_] = 1/x;
Dt[g[y[x]], {x, 2}];
% /. x -> InverseFunction[y][y];
Refine[%,y!=0]
% // TeXForm (* 注意TeXForm里面 T X F 这几个都是大写 *)
% // TraditionalForm

Example 1说明:假设$y=1/x, ~f(x)=g(y)$,则 $f''(x) = y^4 g''(y)+2 y^3 g'(y)$。

(* Example 2 *)
y[x_] = 1/Sqrt[x];
Dt[g[y[x]], {x, 3}];
% /. x -> InverseFunction[y][y];
Refine[%, y > 0]
% // TeXForm (* 注意TeXForm里面 T X F 这几个都是大写 *)
% // TraditionalForm

Example 2说明:假设$y=1/\sqrt{x}, ~f(x)=g(y)$,则 $f'(x) = -\frac{1}{2} y^3 g'(y)$。

(* Example 3 假设$f(x)$是radial的。将$\Delta f(x)$记为$g(|x|)$,并用$g$来表示$f$ *)
y[x1_, x2_, x3_] = Sqrt[x1^2 + x2^2 + x3^2];
(* D[g[y[x1,x2,x3]],{x1,2}]+D[g[y[x1,x2,x3]],{x2,2}]+D[g[y[x1,x2,x3]],{x3,2}] *)
Laplacian[g[y[x1, x2, x3]], {x1, x2, x3}];
Simplify[%]
% /. x1^2 + x2^2 + x3^2 -> y^2;
Refine[%, y > 0]

Example 3说明:假设$x \in \mathbb{R}^3, ~y=\|x\|$,并且函数$f(x)$是radial的并记$f(x)=g(y)$,则 $\Delta_x f(x) = g''(y)+\frac{2 g'(y)}{y}$。

(* Example 4 假设$y=y(x)$,那么如何将$\frac{\mathrm{d}^2}{\mathrm{d}x^2}$用$y$表示 *)
Dt[g[y[x]], {x, 2}]

Example 4说明:假设$y=y(x)$,那么如何将$\frac{\mathrm{d}^2}{\mathrm{d}x^2}$用$y$表示出来:我们应该有:$\frac{\mathrm{d}^2}{\mathrm{d}x^2} = (y'(x))^2 \frac{\mathrm{d}^2}{\mathrm{d}y^2} + y''(x) \frac{\mathrm{d}}{\mathrm{d}y}$.

Mathematica求微分换元的更多相关文章

  1. 用mathematica求六元一次方程组且方程个数比变量个数少一个

    问题详见知乎:https://www.zhihu.com/question/68000713 我的问题:有5个方程,6个变量,其实我是想求出来de1=(系数)*dS1的形式,系数有Cij组成,Cij为 ...

  2. [转]二重积分换元法的一种简单证明 (ps:里面的符号有点小错误,理解就好。。。

    ---恢复内容开始--- 10.3二重积分的换元积分法 在一元函数定积分的计算中,我们常常进行换元,以达删繁就简的目的,当然,二重积分也有换元积分的问题. 首先让我们回顾一下前面曾讨论的一个事实. 设 ...

  3. 求一个n元一次方程的解,Gauss消元

    求一个n元一次方程的解,Gauss消元 const Matrix=require('./Matrix.js') /*Gauss 消元 传入一个矩阵,传出结果 */ function Gauss(mat ...

  4. MATLAB求微分

    求微分 diff(函数) , 求的一阶导数;diff(函数, n) , 求的n阶导数(n是具体整数);diff(函数,变量名), 求对的偏导数;diff(函数, 变量名,n) ,求对的n阶偏导数; & ...

  5. YAPTCHA UVALive - 4382(换元+威尔逊定理)

    题意就是叫你求上述那个公式在不同N下的结果. 思路:很显然的将上述式子换下元另p=3k+7则有 Σ[(p-1)!+1/p-[(p-1)!/p]] 接下来用到一个威尔逊定理,如果p为素数则 ( p -1 ...

  6. python求微分方程组的数值解曲线01

    本人最近在写一篇关于神经网络同步的文章,其一部分模型为: x_i^{\Delta}(t)= -a_i*x_i(t)+ b_i* f(x_i(t))+ \sum\limits_{j \in\{i-1, ...

  7. Mathematica 求出解后代入变量

    Solve[2 x - 3 == 0, x] x = x //. %[[1]]

  8. MT【180】齐次化+换元

    已知实数$a,b$满足$a^2-ab-2b^2=1,$则$a^2+b^2$的取值范围_____ 解答:$\textbf{方法一}$由已知得$(a-2b)(a+b)=1$,设$x=a-2b,y=a+b$ ...

  9. MachineLearningPreface

    机器学习(包括监督学习, 无监督学习, 半监督学习与强化学习) 监督学习(包括分类与线性回归) 分类(标签的值为散列的"yes"或者"no", "go ...

随机推荐

  1. 牛客网暑期ACM多校训练营(第七场)Bit Compression

    链接:https://www.nowcoder.com/acm/contest/145/C 来源:牛客网 题目描述 A binary string s of length N = 2n is give ...

  2. Centos7中网络及设备相关配置

    centos7中,不再赞成使用ifconfig工具,取而代之的是nmcli工具,服务管理也是以systemctl工具取代了service,这些之前版本的工具虽然在centos7中还可以继续使用,只是出 ...

  3. css控制滚动条的出现隐藏导致的页面闪动的问题

    之前这些小细节都在实践的时候给忽视了,或者都动态加载,框架的使用等因素的隐藏,变得不那么容易出现. 今天看到张鑫旭大牛的微博,觉得记录一下这个小问题的解决方案 <div style=" ...

  4. 由数据库表生成jpa实体工具

    package cn.net.yto.aaa.dao.generator; /** * 由数据库表生成jpa实体工具 * * @author huike * Created by gf.liu on ...

  5. selenium自动化实例: 多层框架中关于iframe的定位,以及select下拉框选择

    对于一个自动化的初学者来说会很常见的遇到元素明明存在却始终定位不到, 从而导致脚本报错,当然定位不到元素的原因很多, 其中一种就是多层框架iframe导致的 下方截图示意: 下方为写脚本时候的示例并其 ...

  6. firefox 开启安全禁用端口

    firefox 开启安全禁用端口 step1: 在firefox地址栏键入 about:config step2: 新建字符串 network.security.ports.banned.overri ...

  7. ISCSI

    感谢: https://www.cnblogs.com/wuchanming/p/4019660.html

  8. Windows挂载NFS共享盘

    Centos7添加NFS方法请见如下链接: https://www.cnblogs.com/jackyzm/p/10285845.html 一:添加NFS服务 1.1:此电脑-右键-管理-window ...

  9. JS-构造函数模式代码实战和总结-极客

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  10. jmeter的学习路线