2194: 快速傅立叶之二

Time Limit: 10 Sec  Memory Limit: 259 MB
Submit: 1273  Solved: 745

Description

请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5。 a,b中的元素均为小于等于100的非负整数。

Input

第一行一个整数N,接下来N行,第i+2..i+N-1行,每行两个数,依次表示a[i],b[i] (0 < = i < N)。

Output

输出N行,每行一个整数,第i行输出C[i-1]。

Sample Input

5
3 1
2 4
1 1
2 4
1 4

Sample Output

24
12
10
6
1

HINT

Source

【分析】

  这个卷积也很容易看出来

  C[k]=sigma(a[i]*b[i-k])

  变形,先讲b数组倒置:

  C[k]=sigma(a[i]*b[n-i+k])

  令D[k]=sigma(a[i]*b[k-i])

  则C[k]=D[n+k]

  D数组就是标准卷积了,用FFT加速。

递归:

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
#define Maxn 100010*4
const double pi=3.141592653; struct P
{
double x,y;
P() {x=y=;}
P(double x,double y):x(x),y(y){}
friend P operator + (P x,P y) {return P(x.x+y.x,x.y+y.y);}
friend P operator - (P x,P y) {return P(x.x-y.x,x.y-y.y);}
friend P operator * (P x,P y) {return P(x.x*y.x-x.y*y.y,x.x*y.y+x.y*y.x);}
}a[Maxn],b[Maxn]; void fft(P *s,int n,int f)
{
if(n==) return;
P a0[n>>],a1[n>>];
for(int i=;i<=n;i+=) a0[i>>]=s[i],a1[i>>]=s[i+];
fft(a0,n>>,f);fft(a1,n>>,f);
P wn(cos(*pi/n),f*sin(*pi/n)),w(,);
for(int i=;i<(n>>);i++,w=w*wn) s[i]=a0[i]+w*a1[i],s[i+(n>>)]=a0[i]-w*a1[i];
} int main()
{
int n;
scanf("%d",&n);n--;
for(int i=;i<=n;i++) scanf("%lf%lf",&a[i].x,&b[i].x);
for(int i=;i<=n/;i++) swap(b[i].x,b[n-i].x);
int nn=;
while(nn<=*n) nn<<=;
fft(a,nn,);fft(b,nn,);
for(int i=;i<=nn;i++) a[i]=a[i]*b[i];
fft(a,nn,-);
for(int i=n;i<=n+n;i++) printf("%d\n",(int)(a[i].x/nn+0.5));
return ;
}

2017-04-13 10:39:50

【BZOJ 2194】2194: 快速傅立叶之二(FFT)的更多相关文章

  1. bzoj 2194: 快速傅立叶之二 -- FFT

    2194: 快速傅立叶之二 Time Limit: 10 Sec  Memory Limit: 259 MB Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k & ...

  2. bzoj 2194 快速傅立叶之二 —— FFT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2194 如果把 a 序列翻转,则卷积得到的是 c[n-i],再把得到的 c 序列翻转即可. 代 ...

  3. BZOJ.2194.快速傅立叶之二(FFT 卷积)

    题目链接 \(Descripiton\) 给定\(A[\ ],B[\ ]\),求\[C[k]=\sum_{i=k}^{n-1}A[i]*B[i-k]\ (0\leq k<n)\] \(Solut ...

  4. BZOJ 2194 快速傅立叶之二 ——FFT

    [题目分析] 咦,这不是卷积裸题. 敲敲敲,结果样例也没过. 看看看,卧槽i和k怎么反了. 艹艹艹,把B数组取个反. 靠靠靠,怎么全是零. 算算算,最终的取值范围算错了. 交交交,总算是A掉了. [代 ...

  5. 【BZOJ 2194】快速傅立叶之二

    随便代换一下把它变成多项式乘法,及$C[T]=\sum_{i=0}^{T}A[i]×B[T-i]$这种形式,然后FFT求一下就可以啦 #include<cmath> #include< ...

  6. BZOJ2194:快速傅立叶之二(FFT)

    Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5. a,b中的元素均为小于等于100的非 ...

  7. 【bzoj2194】快速傅立叶之二 FFT

    题意:给定序列a,b,求序列c,\(c(k)=\sum_{i=k}^{n-1}a(i)b(i-k)\) Solution: \[ c(k)=\sum_{i=k}^{n-1}a(i)b(i-k)\\ c ...

  8. bzoj2194 快速傅立叶之二 ntt

    bzoj2194 快速傅立叶之二 链接 bzoj 思路 对我这种和式不强的人,直接转二维看. 发现对\(C_k\)贡献的数对(i,j),都是右斜对角线. 既然贡献是对角线,我们可以利用对角线的性质了. ...

  9. 【BZOJ2194】快速傅立叶之二

    [BZOJ2194]快速傅立叶之二 Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5. ...

随机推荐

  1. 【BZOJ】2337: [HNOI2011]XOR和路径 期望+高斯消元

    [题意]给定n个点m条边的带边权无向连通图(有重边和自环),在每个点随机向周围走一步,求1到n的期望路径异或值.n<=100,wi<=10^9. [算法]期望+高斯消元 [题解]首先异或不 ...

  2. JQuery的链式编程,隐式迭代是啥意思?

    链式编程 1.好处 "一句话,链式编程可以省去很多重复的代码." 这话什么意思呢?举个例子. /*设置obj对象的两个属性*/ //普通做法是这样的 obj.name = '小明' ...

  3. PHPMailer发送邮件(一)

    Github 地址:(已更新,适用于旧版) PHPMailer : https://github.com/PHPMailer/PHPMailer 一.基本要求 Web访问正常(apache可以正常访问 ...

  4. 大聊Python----迭代器

    迭代器 我们已经知道,可以直接作用于for循环的数据类型有以下几种: 一类是集合数据类型,如list.tuple.dict.set.str等: 一类是generator,包括生成器和带yield的ge ...

  5. Web安全的三个攻防姿势

    原文地址:https://segmentfault.com/a/1190000011601837 作者: zwwill_木羽 关于Web安全的问题,是一个老生常谈的问题,作为离用户最近的一层,我们大前 ...

  6. Mysql 中 char 、varchar 、text的区别

    首先它们的存储方式和数据的检索方式都不一样.数据的检索效率是:char > varchar > text 空间占用方面,就要具体情况具体分析了. char:存储定长数据很方便,CHAR字段 ...

  7. ssh -o 常用选项

    ssh -o ConnectTimeout=3 -o ConnectionAttempts=5 -o PasswordAuthentication=no -o StrictHostKeyCheckin ...

  8. SYN Flood攻击及防御方法 (转)

    原文连接:http://blog.csdn.net/bill_lee_sh_cn/article/details/6065704 一.为什么Syn Flood会造成危害      这要从操作系统的TC ...

  9. java版云笔记(四)

    页面的笔记本加载完成了,接下来就是点击笔记本显示将笔记显示,同时把笔记在右边的编辑器中,同时把编辑后的笔记更新. 注:这个项目的sql文件,需求文档,需要的html文件,jar包都可以去下载,下载地址 ...

  10. 登陆记录utmp wtmp

    /var/log/wtmp文件的作用     /var/log/wtmp也是一个二进制文件,记录每个用户的登录次数和持续时间等信息.   查看方法:   可以用last命令输出当中内容: debian ...