本地idea开发mapreduce程序提交到远程hadoop集群执行
https://www.codetd.com/article/664330

https://blog.csdn.net/dream_an/article/details/84342770

通过idea开发mapreduce程序并直接run,提交到远程hadoop集群执行mapreduce。
简要流程:本地开发mapreduce程序–>设置yarn 模式 --> 直接本地run–>远程集群执行mapreduce程序;
完整的流程:本地开发mapreduce程序——> 设置yarn模式——>初次编译产生jar文件——>增加 job.setJar("mapreduce/build/libs/mapreduce-0.1.jar");——>直接在Idea中run——>远程集群执行mapreduce程序;
一图说明问题:
源码
build.gradle
plugins {
id 'java'
}
group 'com.ruizhiedu'
version '0.1'
sourceCompatibility = 1.8
repositories {
mavenCentral()
}
dependencies {
compile group: 'org.apache.hadoop', name: 'hadoop-common', version: '3.1.0'
compile group: 'org.apache.hadoop', name: 'hadoop-mapreduce-client-core', version: '3.1.0'
compile group: 'org.apache.hadoop', name: 'hadoop-mapreduce-client-jobclient', version: '3.1.0'
testCompile group: 'junit', name: 'junit', version: '4.12'
}
java文件
输入、输出已经让我写死了,可以直接run。不需要再运行时候设置idea运行参数
wc.java
package com; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Counter;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.hadoop.util.StringUtils; import java.io.BufferedReader; import java.io.FileReader;
import java.io.IOException;
import java.net.URI;
import java.util.*; /**
* @author wangxiaolei(王小雷)
* @since 2018/11/22
*/ public class wc {
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable> { static enum CountersEnum { INPUT_WORDS } private final static IntWritable one = new IntWritable();
private Text word = new Text(); private boolean caseSensitive;
private Set<String> patternsToSkip = new HashSet<String>(); private Configuration conf;
private BufferedReader fis; @Override
public void setup(Context context) throws IOException,
InterruptedException {
conf = context.getConfiguration();
caseSensitive = conf.getBoolean("wordcount.case.sensitive", true);
if (conf.getBoolean("wordcount.skip.patterns", false)) {
URI[] patternsURIs = Job.getInstance(conf).getCacheFiles();
for (URI patternsURI : patternsURIs) {
Path patternsPath = new Path(patternsURI.getPath());
String patternsFileName = patternsPath.getName().toString();
parseSkipFile(patternsFileName);
}
}
} private void parseSkipFile(String fileName) {
try {
fis = new BufferedReader(new FileReader(fileName));
String pattern = null;
while ((pattern = fis.readLine()) != null) {
patternsToSkip.add(pattern);
}
} catch (IOException ioe) {
System.err.println("Caught exception while parsing the cached file '"
+ StringUtils.stringifyException(ioe));
}
} @Override
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
String line = (caseSensitive) ?
value.toString() : value.toString().toLowerCase();
for (String pattern : patternsToSkip) {
line = line.replaceAll(pattern, "");
}
StringTokenizer itr = new StringTokenizer(line);
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
Counter counter = context.getCounter(CountersEnum.class.getName(),
CountersEnum.INPUT_WORDS.toString());
counter.increment();
}
}
} public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = ;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
} public static void main(String[] args) throws Exception { Configuration conf = new Configuration();
conf.set("yarn.resourcemanager.address", "192.168.56.101:8050");
conf.set("mapreduce.framework.name", "yarn");
conf.set("fs.defaultFS", "hdfs://vbusuanzi:9000/");
// conf.set("mapred.jar", "mapreduce/build/libs/mapreduce-0.1.jar"); // 也可以在这里设置刚刚编译好的jar
conf.set("mapred.job.tracker", "vbusuanzi:9001");
// conf.set("mapreduce.app-submission.cross-platform", "true");// Windows开发者需要设置跨平台
args = new String[]{"/tmp/test/LICENSE.txt","/tmp/test/out30"};
GenericOptionsParser optionParser = new GenericOptionsParser(conf, args);
String[] remainingArgs = optionParser.getRemainingArgs(); if ((remainingArgs.length != ) && (remainingArgs.length != )) {
System.err.println("Usage: wordcount <in> <out> [-skip skipPatternFile]");
System.exit();
} Job job = Job.getInstance(conf,"test");
job.setJar("mapreduce/build/libs/mapreduce-0.1.jar");
job.setJarByClass(com.wc.class); job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class); List<String> otherArgs = new ArrayList<String>();
for (int i=; i < remainingArgs.length; ++i) {
if ("-skip".equals(remainingArgs[i])) {
job.addCacheFile(new Path(remainingArgs[++i]).toUri());
job.getConfiguration().setBoolean("wordcount.skip.patterns", true);
} else {
otherArgs.add(remainingArgs[i]);
}
}
FileInputFormat.addInputPath(job, new Path(otherArgs.get()));
FileOutputFormat.setOutputPath(job, new Path(otherArgs.get())); job.waitForCompletion(true); System.exit(job.waitForCompletion(true) ? : );
}
}
本地idea开发mapreduce程序提交到远程hadoop集群执行的更多相关文章
- eclipse连接远程hadoop集群开发时权限不足问题解决方案
转自:http://blog.csdn.net/shan9liang/article/details/9734693 eclipse连接远程hadoop集群开发时报错 Exception in t ...
- eclipse连接远程hadoop集群开发时0700问题解决方案
eclipse连接远程hadoop集群开发时报错 错误信息: Exception in thread "main" java.io.IOException:Failed to se ...
- 在windows远程提交任务给Hadoop集群(Hadoop 2.6)
我使用3台Centos虚拟机搭建了一个Hadoop2.6的集群.希望在windows7上面使用IDEA开发mapreduce程序,然后提交的远程的Hadoop集群上执行.经过不懈的google终于搞定 ...
- 本地Pycharm将spark程序发送到远端spark集群进行处理
前言 最近在搞hadoop+spark+python,所以就搭建了一个本地的hadoop环境,基础环境搭建地址hadoop2.7.7 分布式集群安装与配置,spark集群安装并集成到hadoop集群, ...
- Eclipse提交任务至Hadoop集群遇到的问题
环境:Windows8.1,Eclipse 用Hadoop自带的wordcount示例 hadoop2.7.0 hadoop-eclipse-plugin-2.7.0.jar //Eclipse的插件 ...
- idea打jar包-MapReduce作业提交到hadoop集群执行
https://blog.csdn.net/jiaotangX/article/details/78661862 https://liushilang.iteye.com/blog/2093173
- Eclipse远程提交hadoop集群任务
文章概览: 1.前言 2.Eclipse查看远程hadoop集群文件 3.Eclipse提交远程hadoop集群任务 4.小结 1 前言 Hadoop高可用品台搭建完备后,参见<Hadoop ...
- IntelliJ IDEA编写的spark程序在远程spark集群上运行
准备工作 需要有三台主机,其中一台主机充当master,另外两台主机分别为slave01,slave02,并且要求三台主机处于同一个局域网下 通过命令:ifconfig 可以查看主机的IP地址,如下图 ...
- Hadoop集群(第7期)_Eclipse开发环境设置
1.Hadoop开发环境简介 1.1 Hadoop集群简介 Java版本:jdk-6u31-linux-i586.bin Linux系统:CentOS6.0 Hadoop版本:hadoop-1.0.0 ...
随机推荐
- db2 将逗号分隔数据转换为多值IN列表
将逗号分隔数据转换为多值IN列表 2010-03-15 11:16:59| 分类: 数据库技术|举报|字号 订阅 下载LOFTER我的照片书 | 原文:http://book.cs ...
- ACM计算几何模板——二维几何基础(基本运算,点和线,多边形)
/*==========================*\ | 计算几何基础函数 | | 1.点和向量的定义 | | 2.向量的基本运算 | | 3.点积 | | 4.向量长度 | | 5.两向量角 ...
- loadruner11 socket脚本-10053错误
背景: socket 10053异常:软件主动放弃一个连接,原因是超时或协议错误.如果LR客户端报10053异常,说明LR在执行套接字操作时,发生通信超时.网络中断或其它异常,主动将Socket连接断 ...
- 解决error: Unable to find vcvarsall.bat【python 2.7/vs2010】
转自:http://blog.csdn.net/secretx/article/details/17472107 去下载安装VS2010(08版貌似也行,不过没必要用旧版,指不定哪个库又无法编译),给 ...
- tcp断开时分几步
连接时是三次握手 断开时是四次握手,因为它是半关闭造成的
- Scrapy使用详细记录
这几天,又用到了scrapy框架写爬虫,感觉忘得差不多了,虽然保存了书签,但有些东西,还是多写写才好啊 首先,官方而经典的的开发手册那是需要的: https://doc.scrapy.org/en/l ...
- angular2+ 引用layDate日期选择插件
layDate日期选择插件使用npm安装好像是行不通的,但angular2+的日期选择控件库又不能够支持时分秒的选择 在angular项目中引用layDate 1. 首先官网下载layDate独立版, ...
- Sass之二(进阶篇)
源码链接:http://pan.baidu.com/s/1o8M51hC 1. 数据类型 1.1 Number 数字类型,小数类型,带有像素单位的数字类型,全部都属于Number类型 Number类型 ...
- DELPHI中调用XSD去验证XML的合法性
procedure TFrmPrintReport.Button3Click(Sender: TObject);var SchemaDoc, XmlDoc: IXMLDOMDocument2; S ...
- linux日志自动分割shell
随着服务器运行时间不断增加,各种日志文件也会不断的增长,虽然硬盘已经是白菜价了,但是如果当你看到你的一个日志文件达到数十G的时候是什么感想?下面的脚本实现了如下功能: 自动对日志文件进行分割 对分割后 ...