本地idea开发mapreduce程序提交到远程hadoop集群执行
https://www.codetd.com/article/664330

https://blog.csdn.net/dream_an/article/details/84342770

通过idea开发mapreduce程序并直接run,提交到远程hadoop集群执行mapreduce。
简要流程:本地开发mapreduce程序–>设置yarn 模式 --> 直接本地run–>远程集群执行mapreduce程序;
完整的流程:本地开发mapreduce程序——> 设置yarn模式——>初次编译产生jar文件——>增加 job.setJar("mapreduce/build/libs/mapreduce-0.1.jar");——>直接在Idea中run——>远程集群执行mapreduce程序;
一图说明问题:
源码
build.gradle
plugins {
id 'java'
}
group 'com.ruizhiedu'
version '0.1'
sourceCompatibility = 1.8
repositories {
mavenCentral()
}
dependencies {
compile group: 'org.apache.hadoop', name: 'hadoop-common', version: '3.1.0'
compile group: 'org.apache.hadoop', name: 'hadoop-mapreduce-client-core', version: '3.1.0'
compile group: 'org.apache.hadoop', name: 'hadoop-mapreduce-client-jobclient', version: '3.1.0'
testCompile group: 'junit', name: 'junit', version: '4.12'
}
java文件
输入、输出已经让我写死了,可以直接run。不需要再运行时候设置idea运行参数
wc.java
package com; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Counter;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.hadoop.util.StringUtils; import java.io.BufferedReader; import java.io.FileReader;
import java.io.IOException;
import java.net.URI;
import java.util.*; /**
* @author wangxiaolei(王小雷)
* @since 2018/11/22
*/ public class wc {
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable> { static enum CountersEnum { INPUT_WORDS } private final static IntWritable one = new IntWritable();
private Text word = new Text(); private boolean caseSensitive;
private Set<String> patternsToSkip = new HashSet<String>(); private Configuration conf;
private BufferedReader fis; @Override
public void setup(Context context) throws IOException,
InterruptedException {
conf = context.getConfiguration();
caseSensitive = conf.getBoolean("wordcount.case.sensitive", true);
if (conf.getBoolean("wordcount.skip.patterns", false)) {
URI[] patternsURIs = Job.getInstance(conf).getCacheFiles();
for (URI patternsURI : patternsURIs) {
Path patternsPath = new Path(patternsURI.getPath());
String patternsFileName = patternsPath.getName().toString();
parseSkipFile(patternsFileName);
}
}
} private void parseSkipFile(String fileName) {
try {
fis = new BufferedReader(new FileReader(fileName));
String pattern = null;
while ((pattern = fis.readLine()) != null) {
patternsToSkip.add(pattern);
}
} catch (IOException ioe) {
System.err.println("Caught exception while parsing the cached file '"
+ StringUtils.stringifyException(ioe));
}
} @Override
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
String line = (caseSensitive) ?
value.toString() : value.toString().toLowerCase();
for (String pattern : patternsToSkip) {
line = line.replaceAll(pattern, "");
}
StringTokenizer itr = new StringTokenizer(line);
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
Counter counter = context.getCounter(CountersEnum.class.getName(),
CountersEnum.INPUT_WORDS.toString());
counter.increment();
}
}
} public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = ;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
} public static void main(String[] args) throws Exception { Configuration conf = new Configuration();
conf.set("yarn.resourcemanager.address", "192.168.56.101:8050");
conf.set("mapreduce.framework.name", "yarn");
conf.set("fs.defaultFS", "hdfs://vbusuanzi:9000/");
// conf.set("mapred.jar", "mapreduce/build/libs/mapreduce-0.1.jar"); // 也可以在这里设置刚刚编译好的jar
conf.set("mapred.job.tracker", "vbusuanzi:9001");
// conf.set("mapreduce.app-submission.cross-platform", "true");// Windows开发者需要设置跨平台
args = new String[]{"/tmp/test/LICENSE.txt","/tmp/test/out30"};
GenericOptionsParser optionParser = new GenericOptionsParser(conf, args);
String[] remainingArgs = optionParser.getRemainingArgs(); if ((remainingArgs.length != ) && (remainingArgs.length != )) {
System.err.println("Usage: wordcount <in> <out> [-skip skipPatternFile]");
System.exit();
} Job job = Job.getInstance(conf,"test");
job.setJar("mapreduce/build/libs/mapreduce-0.1.jar");
job.setJarByClass(com.wc.class); job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class); List<String> otherArgs = new ArrayList<String>();
for (int i=; i < remainingArgs.length; ++i) {
if ("-skip".equals(remainingArgs[i])) {
job.addCacheFile(new Path(remainingArgs[++i]).toUri());
job.getConfiguration().setBoolean("wordcount.skip.patterns", true);
} else {
otherArgs.add(remainingArgs[i]);
}
}
FileInputFormat.addInputPath(job, new Path(otherArgs.get()));
FileOutputFormat.setOutputPath(job, new Path(otherArgs.get())); job.waitForCompletion(true); System.exit(job.waitForCompletion(true) ? : );
}
}
本地idea开发mapreduce程序提交到远程hadoop集群执行的更多相关文章
- eclipse连接远程hadoop集群开发时权限不足问题解决方案
转自:http://blog.csdn.net/shan9liang/article/details/9734693 eclipse连接远程hadoop集群开发时报错 Exception in t ...
- eclipse连接远程hadoop集群开发时0700问题解决方案
eclipse连接远程hadoop集群开发时报错 错误信息: Exception in thread "main" java.io.IOException:Failed to se ...
- 在windows远程提交任务给Hadoop集群(Hadoop 2.6)
我使用3台Centos虚拟机搭建了一个Hadoop2.6的集群.希望在windows7上面使用IDEA开发mapreduce程序,然后提交的远程的Hadoop集群上执行.经过不懈的google终于搞定 ...
- 本地Pycharm将spark程序发送到远端spark集群进行处理
前言 最近在搞hadoop+spark+python,所以就搭建了一个本地的hadoop环境,基础环境搭建地址hadoop2.7.7 分布式集群安装与配置,spark集群安装并集成到hadoop集群, ...
- Eclipse提交任务至Hadoop集群遇到的问题
环境:Windows8.1,Eclipse 用Hadoop自带的wordcount示例 hadoop2.7.0 hadoop-eclipse-plugin-2.7.0.jar //Eclipse的插件 ...
- idea打jar包-MapReduce作业提交到hadoop集群执行
https://blog.csdn.net/jiaotangX/article/details/78661862 https://liushilang.iteye.com/blog/2093173
- Eclipse远程提交hadoop集群任务
文章概览: 1.前言 2.Eclipse查看远程hadoop集群文件 3.Eclipse提交远程hadoop集群任务 4.小结 1 前言 Hadoop高可用品台搭建完备后,参见<Hadoop ...
- IntelliJ IDEA编写的spark程序在远程spark集群上运行
准备工作 需要有三台主机,其中一台主机充当master,另外两台主机分别为slave01,slave02,并且要求三台主机处于同一个局域网下 通过命令:ifconfig 可以查看主机的IP地址,如下图 ...
- Hadoop集群(第7期)_Eclipse开发环境设置
1.Hadoop开发环境简介 1.1 Hadoop集群简介 Java版本:jdk-6u31-linux-i586.bin Linux系统:CentOS6.0 Hadoop版本:hadoop-1.0.0 ...
随机推荐
- iOS开发之 -- bundle程序束的制造
我们在写项目的时候,需要添加大量的图片,这个时候除了在x-code-->Assets文件里面添加图片外,还可以添加程序束,这样的话 项目看起来比较整齐,也显得比较专业,下面就来说一下程序束的制造 ...
- tcp断开时分几步
连接时是三次握手 断开时是四次握手,因为它是半关闭造成的
- C++随机数生成方法(转载,赶紧搜藏)
一.C++中不能使用random()函数 =============================================================================== ...
- ios笔试题(选择题)
1-10 C语言 & 计算机基础 1.请看下面一段代码 static int a = 1; int main(){ int b = 2; char *c = NULL; c = (char * ...
- ListView.setDivider,自定义的Devider
ListView lv = getListView(); ColorDrawable sage = new ColorDrawable(this.getResources().getColor(R.c ...
- 160316、实时处理oracle数据库中表的数据变化
http://blog.csdn.net/as339000204/article/details/45390727 近期接受项目需求,需要实时处理oracle数据库中表的数据变化,首先想到的是 ...
- json、jsonp的定义和区别
一.区别 简单来说,json是一种数据交换格式,jsonp是一种非官方跨域数据交互协议.json描述的是信息的格式,而jsonp是信息传递双方约定的方法.json返回的是一串数据,而 jsonp返回的 ...
- Java之Tomcat、Dynamic web project与Servlet
一.Tomcat配置 Conf Config configration -->配置 Service.xml:用来配置Tomcat Tomcat_users.xml:用来配置Tomca ...
- PM 项目管理
BugTracker:http://www.ifdefined.com/bugtrackernet.html PM:http://www.zentao.net/download.html 51cto: ...
- 【Python之路】Python目录
Python基础1 -- Python由来.Python种类.编码方式, Python基础2 -- Python运算符.数据类型.enumerate.range.for循环 python基础3 -- ...