这个题首先一眼能看出二分答案……

毕竟连可爱的边界都给你了。

下面就是怎么check

首先预处理跑一遍floyed,预处理出最短路。

用网络流判断能否达到即可。

#include<bits/stdc++.h>
typedef long long ll;
const int N=;
const int M=;
const int inf=1e9+;
using namespace std;
inline int read(){
int f=,x=;char ch;
do{ch=getchar();if(ch=='-')f=-;}while(ch<''||ch>'');
do{x=x*+ch-'';ch=getchar();}while(ch>=''&&ch<='');
return f*x;
}
namespace MaxFlow{ struct Edge{int u,v,next,f;}G[M];
int head[N],level[N],tot;
inline void init(){tot=;memset(head,,sizeof(head));}
inline void addedge(int u,int v,int f){
G[++tot].u=u;G[tot].v=v;G[tot].f=f;G[tot].next=head[u];head[u]=tot;
G[++tot].u=v;G[tot].v=u;G[tot].f=;G[tot].next=head[v];head[v]=tot;
}
inline bool bfs(int s,int t){
memset(level,,sizeof(level));queue<int>q;
q.push(s);level[s]=;
while(!q.empty()){
int u=q.front();q.pop();
if(u==t)return ;
for(int i=head[u];i;i=G[i].next){
int v=G[i].v,f=G[i].f;
if(f&&!level[v])level[v]=level[u]+,q.push(v);
}
}
return ;
}
inline int dfs(int u,int maxf,int t){
if(u==t)return maxf;int rat=;
for(int i=head[u];i;i=G[i].next){
int v=G[i].v,f=G[i].f;
if(f&&level[v]==level[u]+){
f=dfs(v,min(maxf-rat,f),t);
rat+=f;G[i].f-=f;G[i^].f+=f;
}
}
if(!rat)level[u]=inf;
return rat;
}
inline int dinic(int s,int t){
int ans=;
while(bfs(s,t))ans+=dfs(s,inf,t);
return ans;
} }
int n,m,p,q,f[N],dis[][];
inline bool check(int x){
MaxFlow::init();int s=,t=n*+;
for(int i=;i<=n;i++)MaxFlow::addedge(s,i,f[i]);
for(int i=;i<=n;i++)MaxFlow::addedge(i+n,t,);
for(int i=;i<=n;i++)if(f[i])for(int j=;j<=n;j++)
if(dis[i][j]<=x)MaxFlow::addedge(i,j+n,);
int ans=MaxFlow::dinic(s,t);
return ans>=q;
}
int main(){
n=read();m=read();p=read();q=read();
for(int i=;i<=p;i++){int x=read();f[x]++;}
memset(dis,0x3f,sizeof(dis));
for(int i=;i<=n;i++)dis[i][i]=;
for(int i=;i<=m;i++){
int u=read(),v=read(),w=read();dis[u][v]=dis[v][u]=min(dis[u][v],w);
}
for(int k=;k<=n;k++)for(int i=;i<=n;i++)for(int j=;j<=n;j++)
dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
int l=,r=,ret=-;
while(l<=r){
int mid=(l+r)>>;
if(check(mid))r=mid-,ret=mid;
else l=mid+;
}
printf("%d\n",ret);
}

【BubbleCup X】D. Exploration plan的更多相关文章

  1. 【做题】HDU6331 Walking Plan——矩阵&分块

    题意:给出一个有\(n\)个结点的有向图,边有边权.有\(q\)组询问,每次给出\(s,t,k\),问从\(s\)到\(t\)至少经过\(k\)条边的最短路. \(n \leq 50, \, q \l ...

  2. 【BubbleCup X】F:Product transformation

    按照题解的规律,首先能看出前面每个数幂次的性质. 然后发掘约数的性质 #include<bits/stdc++.h> ; typedef long long ll; using names ...

  3. 【BubbleCup X】G:Bathroom terminal

    一个hash的题 对?出现位置直接暴力枚举,然后hash判断下,扔进map里 cf的评测机跑的针tm块 #include<bits/stdc++.h> ; ; typedef long l ...

  4. 【PAT甲级】1030 Travel Plan (30 分)(SPFA,DFS)

    题意: 输入N,M,S,D(N,M<=500,0<S,D<N),接下来M行输入一条边的起点,终点,通过时间和通过花费.求花费最小的最短路,输入这条路径包含起点终点,通过时间和通过花费 ...

  5. 【CF526G】Spiders Evil Plan(贪心)

    [CF526G]Spiders Evil Plan(贪心) 题面 洛谷 CodeForces 给定一棵树,要求选择\(y\)条链,满足被链覆盖的所有点在树上联通,且\(x\)必定在联通块中. 对于每次 ...

  6. 【codeforces 742C】Arpa's loud Owf and Mehrdad's evil plan

    time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...

  7. 【强化学习】1-1-2 “探索”(Exploration)还是“ 利用”(Exploitation)都要“面向目标”(Goal-Direct)

    title: [强化学习]1-1-2 "探索"(Exploration)还是" 利用"(Exploitation)都要"面向目标"(Goal ...

  8. 【Tsinghua OJ】多米诺骨牌(domino)问题

    (domino.c/cpp)[问题描述] 小牛牛对多米诺骨牌有很大兴趣,然而她的骨牌比较特别,只有黑色和白色的两种.她觉 得如果存在连续三个骨牌是同一种颜色,那么这个骨牌排列便是不美观的.现在她有n个 ...

  9. 【English Teradata】名称缩写

    日常缩写 [GTM]Teradata Go-to-Market employees [GTS]Teradata Global Technical Support [GSC] [CS&S]Cus ...

随机推荐

  1. 【bzoj5147】casino 区间dp

    题目描述 赌城拉斯维加斯的米高梅大赌场最近推出了一种新式赌法.它的玩法是由庄家设局(所用赌具是一批五颜六色的筹码),赌徒只要交付一定数额的赌资即可入局.开赌前庄家将手中的筹码依次排开铺成一排构成一局, ...

  2. Qt Creator中的3D绘图及动画教程(参照NeHe)

    Qt Creator中的3D绘图及动画教程(参照NeHe) http://blog.csdn.net/cly116/article/details/47184729 刚刚学习了Qt Creator,发 ...

  3. 【BZOJ2763】飞行路线(最短路)

    [BZOJ2763]飞行路线(最短路) 题面 BZOJ Description Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司.该航空公司一共在n个城市设有业务,设这些城市分别标 ...

  4. IPC$入侵大全

    0x01  ipc$的定义 IPC$(Internet Process Connection)是共享"命名管道"的资源(大家都是这么说的),它是为了让进程间通信而开放的命名管道,可 ...

  5. Mysql(一) 基本操作

    一.介绍 1.数据库 数据库,通俗的讲,即为存储数据的“仓库”.不过,数据库不仅只是存储,还对所存储的数据做相应的管理,例如,访问权限,安全性,并发操作,数据的备份与恢复,日志等.实际上,我们所提及的 ...

  6. 【CF113D】Museum

    Portal --> cf113D Solution 额题意的话大概就是给一个无向图然后两个人给两个出发点,每个点每分钟有\(p[i]\)的概率停留,问这两个人在每个点相遇的概率是多少 如果说我 ...

  7. winform布局 FlowLayoutPanel的控件

    http://www.cnblogs.com/moon-mountain/archive/2011/09/08/2171232.html 1.采用流布局:工具箱里边容器里有一个:FlowLayoutP ...

  8. Libevent学习笔记(五) 根据例子学习bufferevent

    libevent中提供了一个Hello-world.c 的例子,从这个例子可以学习libevent是如何使用bufferevent的. 这个例子在Sample中 这个例子之前讲解过,这次主要看下buf ...

  9. uniqid()

    uniqid() 函数基于以微秒计的当前时间,生成一个唯一的 ID.

  10. [Java多线程]-Thread和Runable源码解析之基本方法的运用实例

    前面的文章:多线程爬坑之路-学习多线程需要来了解哪些东西?(concurrent并发包的数据结构和线程池,Locks锁,Atomic原子类) 多线程爬坑之路-Thread和Runable源码解析 前面 ...