1 数据集介绍:

 
虹膜
 
 

150个实例
 
萼片长度,萼片宽度,花瓣长度,花瓣宽度
(sepal length, sepal width, petal length and petal width)
 
类别:
Iris setosa, Iris versicolor, Iris virginica.
 
 

 
 
2. 利用Python的机器学习库sklearn: SkLearnExample.py
 
from sklearn import neighbors
from sklearn import datasets
 
knn = neighbors.KNeighborsClassifier()
 
 
iris = datasets.load_iris()
 
 
print iris
 
knn.fit(iris.data, iris.target)
 
predictedLabel = knn.predict([[0.1, 0.2, 0.3, 0.4]])
 
print predictedLabel
 
 
 
 
3. KNN 实现Implementation:
 
 
# Example of kNN implemented from Scratch in Python
 
import csv
import random
import math
import operator
 
def loadDataset(filename, split, trainingSet=[] , testSet=[]):
    with open(filename, 'rb') as csvfile:
        lines = csv.reader(csvfile)
        dataset = list(lines)
        for x in range(len(dataset)-1):
            for y in range(4):
                dataset[x][y] = float(dataset[x][y])
            if random.random() < split:
                trainingSet.append(dataset[x])
            else:
                testSet.append(dataset[x])
 
 
def euclideanDistance(instance1, instance2, length):
    distance = 0
    for x in range(length):
        distance += pow((instance1[x] - instance2[x]), 2)
    return math.sqrt(distance)
 
def getNeighbors(trainingSet, testInstance, k):
    distances = []
    length = len(testInstance)-1
    for x in range(len(trainingSet)):
        dist = euclideanDistance(testInstance, trainingSet[x], length)
        distances.append((trainingSet[x], dist))
    distances.sort(key=operator.itemgetter(1))
    neighbors = []
    for x in range(k):
        neighbors.append(distances[x][0])
    return neighbors
 
def getResponse(neighbors):
    classVotes = {}
    for x in range(len(neighbors)):
        response = neighbors[x][-1]
        if response in classVotes:
            classVotes[response] += 1
        else:
            classVotes[response] = 1
    sortedVotes = sorted(classVotes.iteritems(), key=operator.itemgetter(1), reverse=True)
    return sortedVotes[0][0]
 
def getAccuracy(testSet, predictions):
    correct = 0
    for x in range(len(testSet)):
        if testSet[x][-1] == predictions[x]:
            correct += 1
    return (correct/float(len(testSet))) * 100.0
    
def main():
    # prepare data
    trainingSet=[]
    testSet=[]
    split = 0.67
    loadDataset(r'D:\MaiziEdu\DeepLearningBasics_MachineLearning\Datasets\iris.data.txt', split, trainingSet, testSet)
    print 'Train set: ' + repr(len(trainingSet))
    print 'Test set: ' + repr(len(testSet))
    # generate predictions
    predictions=[]
    k = 3
    for x in range(len(testSet)):
        neighbors = getNeighbors(trainingSet, testSet[x], k)
        result = getResponse(neighbors)
        predictions.append(result)
        print('> predicted=' + repr(result) + ', actual=' + repr(testSet[x][-1]))
    accuracy = getAccuracy(testSet, predictions)
    print('Accuracy: ' + repr(accuracy) + '%')
    
main()

4.2 最邻近规则分类(K-Nearest Neighbor)KNN算法应用的更多相关文章

  1. K Nearest Neighbor 算法

    文章出处:http://coolshell.cn/articles/8052.html K Nearest Neighbor算法又叫KNN算法,这个算法是机器学习里面一个比较经典的算法, 总体来说KN ...

  2. K NEAREST NEIGHBOR 算法(knn)

    K Nearest Neighbor算法又叫KNN算法,这个算法是机器学习里面一个比较经典的算法, 总体来说KNN算法是相对比较容易理解的算法.其中的K表示最接近自己的K个数据样本.KNN算法和K-M ...

  3. kNN(K-Nearest Neighbor)最邻近规则分类

    KNN最邻近规则,主要应用领域是对未知事物的识别,即推断未知事物属于哪一类,推断思想是,基于欧几里得定理,推断未知事物的特征和哪一类已知事物的的特征最接近: K近期邻(k-Nearest Neighb ...

  4. kNN(K-Nearest Neighbor)最邻近规则分类(转)

    KNN最邻近规则,主要应用领域是对未知事物的识别,即判断未知事物属于哪一类,判断思想是,基于欧几里得定理,判断未知事物的特征和哪一类已知事物的的特征最接近: K最近邻(k-Nearest Neighb ...

  5. 机器学习--最邻近规则分类KNN算法

    理论学习: 3. 算法详述        3.1 步骤:      为了判断未知实例的类别,以所有已知类别的实例作为参照      选择参数K      计算未知实例与所有已知实例的距离      选 ...

  6. python_机器学习_最临近规则分类(K-Nearest Neighbor)KNN算法

    1. 概念: https://scikit-learn.org/stable/modules/neighbors.html 1. Cover和Hart在1968年提出了最初的临近算法 2. 分类算法( ...

  7. 最邻近规则分类KNN算法

    例子: 求未知电影属于什么类型: 算法介绍: 步骤:  为了判断未知实例的类别,以所有已知类别的实例作为参照      选择参数K      计算未知实例与所有已知实例的距离      选择最近K个已 ...

  8. 最邻近规则分类(K-Nearest Neighbor)KNN算法

     自写代码: # Author Chenglong Qian from numpy import * #科学计算模块 import operator #运算符模块 def createDaraSet( ...

  9. K nearest neighbor cs229

    vectorized code 带来的好处. import numpy as np from sklearn.datasets import fetch_mldata import time impo ...

随机推荐

  1. BootStrap FileInput 插件实现多文件上传前端功能

    <!DOCTYPE html> <html> <head> <title>文件上传</title> <meta charset=&qu ...

  2. 再也不用克隆多个仓库啦!git worktree 一个 git 仓库可以连接多个工作目录

    我在 feature 分支开发得多些,但总时不时被高优先级的 BUG 打断需要临时去 develop 分一个分支出来解 BUG.git 2.6 以上开始提供了 worktree 功能,可以解决这样的问 ...

  3. altium布局布线原则

    布局应该先放位置确定不能随意变动的,之后是核心器件,然后是周围器件,如果周围器件过多,为防止布线时交叉过多,可以一部分小模块放到底层. 布线时优先顺序为先电源线和网络中使用频率高的线,之后是信号线.走 ...

  4. python调用rpc实现分布式系统

    rpc 一般俗称,远程过程调用,把本地的函数,放到远端去调用. 通常我们调用一个方法,譬如: sumadd(10, 20),sumadd方法的具体实现要么是用户自己定义,要么存在于该语言的库函数中,也 ...

  5. 解读ASP.NET 5 & MVC6 ---- 系列文章

    本系列的大部分内容来自于微软源码的阅读和网络,大部分测试代码都是基于VS RC版本进行测试的. 解读ASP.NET 5 & MVC6系列(1):ASP.NET 5简介 解读ASP.NET 5 ...

  6. Web 漏洞分析与防御之 CSRF(二)

    原文地址:Web 漏洞分析与防御之 CSRF(二) 博客地址:http://www.extlight.com 一.全称 跨站请求伪造(Cross-site Request Forgery) 二.原理 ...

  7. python-unittest-生成测试报告

    HTMLTestRunner HTMLTestRunner 是 Python 标准库的 unittest 单元测试框架的一个扩展.它生成易于使用的 HTML 测试报告. 一.目录结构 先来看一下项目的 ...

  8. Ubuntu : 在主机和虚拟机之间传文件

    电脑用的是windows的系统,vmware player打开了一台ubuntu虚拟机,想在它们之间传送文件. 在宿主机上安装FTP文件传输软件 步骤如下: 1.Ubuntu中安装ssh,命令:sud ...

  9. 使用sigaction来取代signal作为信号处理器函数

    早期ISO C提供了像这样的函数来支持自定义信号处理 typedef void (*sighandler)(int); sighandler signal(sighandler func); 但是由于 ...

  10. struts2学习(7)值栈简介与OGNL引入

    一.值栈简介: 二.OGNL引入: com.cy.action.HelloAction.java: package com.cy.action; import java.util.Map; impor ...