目录

1 问题描述

2 解决方案

 


1 问题描述

引用自《算法设计与分析基础》第三版:

约瑟夫斯问题,是以弗拉瓦斯。约瑟夫斯(Flavius Josephus)的名字命名的。约瑟夫斯是一个著名的犹太历史学家,参加并记录了公元66—70年犹太人反抗罗马的起义。约瑟夫斯作为一个将军,设法守住了裘达伯特的堡垒达47天之久,但在城市陷落了以后,他和40名顽强的将士在附近的一个洞穴中避难。在那里,这些反抗者表决说“要投降毋宁死”。于是,约瑟夫斯建议每个人应该轮流杀死他旁边的人,而这个顺序是由抽签决定的。约瑟夫斯有预谋地抓到了最后一签,并且,作为洞穴中的两个幸存者之一,他说服了他原先的牺牲品一起投降罗马。

上述是约瑟夫斯问题的起源,看完后个人感觉有点抽象,其实约瑟夫斯问题的本质为:n个人(编号由 1,2, ..., n)围成一圈,由编号为1的人从1开始报数,报到k的退出自杀,剩下的人继续从1开始报数,直到圈内只剩余1人,求胜利者的编号。(n>0, k>0)  

例如:

原n个人编号:

1  2  3  4 ... ... n-1  n

现在进行报数:

1  2  3  4... k(出列自杀)  1  2  ...(循环报数,当到达编号为n的人时,下一个报数的从编号为1的人开始进行)


2 解决方案

约瑟夫斯问题的核心即找出给定n个人从前到后的自杀顺序,最后一个将要进行自杀的人即为幸存者。

具体编码如下:

package com.liuzhen.chapter4;

import java.util.Scanner;

public class JosephProblem {
/*
* 参数n:给定总人数
* 参数k:报数为k的人出列
* 函数功能:返回n个人从前到后的自杀顺序
*/
public int[] getKillOrder(int n,int k){
int[] result = new int[n];
int[] man = new int[n];
for(int i = 0;i < n;i++)
man[i] = i+1; //给n个人编号,编号分别为1~n
int count = 0; //用于计算当前已经自杀的人数
int pos = -1; //用于记录遍历数组man当前下标
int tempK = 0; //用于计算报数大小,一旦tempK = k,则喊到k的人出列
while(count < n){
pos = (pos+1)%n; //遍历过程中,会出现环列,取余可以除去环的影响
if(man[pos] != 0) //man[pos] == 0,表示此人已自杀
tempK++;
if(tempK == k){
result[count++] = man[pos]; //记录当前自杀人的编号
man[pos] = 0;
tempK = 0;
}
}
return result;
} public static void main(String[] args){
JosephProblem test = new JosephProblem();
Scanner in = new Scanner(System.in);
System.out.println("请输入约瑟夫斯问题的总人数n:");
int n = in.nextInt();
System.out.println("请输入约瑟夫斯问题的报数设定值k:");
int k = in.nextInt();
int[] result = test.getKillOrder(n,k);
System.out.println("共"+n+"人,依次报数,当报到"+k+"的人自杀,其自杀顺序为:");
for(int i = 0;i < result.length;i++)
System.out.print(result[i]+" ");
}
}

运行结果:

请输入约瑟夫斯问题的总人数n:
6
请输入约瑟夫斯问题的报数设定值k:
2
共6人,依次报数,当报到2的人自杀,其自杀顺序为:
2 4 6 3 1 5 请输入约瑟夫斯问题的总人数n:
7
请输入约瑟夫斯问题的报数设定值k:
2
共7人,依次报数,当报到2的人自杀,其自杀顺序为:
2 4 6 1 5 3 7 请输入约瑟夫斯问题的总人数n:
10
请输入约瑟夫斯问题的报数设定值k:
3
共10人,依次报数,当报到3的人自杀,其自杀顺序为:
3 6 9 2 7 1 8 5 10 4

参考资料:

1.简单的约瑟夫环算法

算法笔记_029:约瑟夫斯问题(Java)的更多相关文章

  1. 算法笔记_023:拓扑排序(Java)

    目录 1 问题描述 2 解决方案 2.1 基于减治法实现 2.2 基于深度优先查找实现 1 问题描述 给定一个有向图,求取此图的拓扑排序序列. 那么,何为拓扑排序? 定义:将有向图中的顶点以线性方式进 ...

  2. 约瑟夫斯问题-java版数组解法和链表解法

    10个人围成一圈,从1到10编号,从1开始数,数到3或3的倍数的位置,则该位置的人出局,求最后剩下哪一个号? 数组解法: 数组存放数组:a[10]存在1到10编号人 数组遍历到尾部又从头遍历:遍历数组 ...

  3. 算法笔记_228:信用卡号校验(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 当你输入信用卡号码的时候,有没有担心输错了而造成损失呢?其实可以不必这么担心,因为并不是一个随便的信用卡号码都是合法的,它必须通过Luhn算法来验证 ...

  4. 算法笔记_138:稳定婚姻问题(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 何为稳定婚姻问题? 有一个男士的集合Y = {m1,m2,m3...,mn}和一个女士的计划X = {n1,n2,n3,...,nn}.每一个男士有 ...

  5. 算法笔记_137:二分图的最大匹配(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 何为二分图的最大匹配问题? 引用自百度百科: 首先得说明一下何为匹配: 给定一个二分图G,在G的一个子图M中,M的边集{E}中的任意两条边都不依附于 ...

  6. 算法笔记_132:最大流量问题(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 何为最大流量问题? 给定一个有向图,并为每一个顶点设定编号为0~n,现在求取从顶点0(PS:也可以称为源点)到顶点n(PS:也可以称为汇点)后,顶点 ...

  7. 算法笔记_040:二进制幂(Java)

    目录 1 问题描述 2 解决方案 2.1 从左至右二进制幂 2.2 从右至左二进制幂   1 问题描述 使用n的二进制表示,计算a的n次方. 2 解决方案 2.1 从左至右二进制幂 此方法计算a的n次 ...

  8. 算法笔记_014:合并排序(Java)

    1 问题描述 给定一组数据,使用合并排序得到这组数据的非降序排列. 2 解决方案 2.1 合并排序原理简介 引用自百度百科: 合并排序是建立在归并操作上的一种有效的排序算法.该算法是采用分治法(Div ...

  9. 算法笔记_233:二阶魔方旋转(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 魔方可以对它的6个面自由旋转. 我们来操作一个2阶魔方(如图1所示): 为了描述方便,我们为它建立了坐标系. 各个面的初始状态如下:x轴正向:绿x轴 ...

随机推荐

  1. 【UOJ #105】【APIO2014】Beads and wires

    http://uoj.ac/problem/105 好神的dp啊. 确定一个点为根之后,蓝线只能是竖着的,不能横跨兄弟. 枚举每个点为根进行树形dp是\(O(n^2)\)的,\(f(x,0/1)\)表 ...

  2. tyvj Easy

    Easy [描述 Description] 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(我们来简化一下这个游戏的规则    有n次点击要做,成功了就是o,失败了就是x,分 ...

  3. java下划线与驼峰命名互转

    方式一: 下划线与驼峰命名转换: public class Tool { private static Pattern linePattern = Pattern.compile("_(\\ ...

  4. 快速幂 cojs 1130. 取余运算

    cojs 1130. 取余运算 ★   输入文件:dmod.in   输出文件:dmod.out   简单对比时间限制:10 s   内存限制:128 MB [题目描述] 输入b,p,k的值,求b^p ...

  5. UVA 10531 Maze Statistics 迷宫统计 迷宫插头DP 四联通 概率

    题意: 有一个N*M的图,每个格子有独立概率p变成障碍物.你要从迷宫左上角走到迷宫右下角.求每个格子成为一个有解迷宫中的障碍物的概率.N <= 5,M <= 6 分析: 这真是一道好题,网 ...

  6. unix-软件安装

    检查软件是否已经安装 rpm -qa|grep 软件标识名 在线安装软件 yum -y install 软件标识名

  7. 如何测试Nginx的高性能

    简介 Nginx ("engine x") 是一个高性能的HTTP和反向代理服务器,也是一个IMAP/POP3/SMTP代理服务器: 作为一款轻量级的Web服务器,具有占有内存少, ...

  8. Caliburn.Micro对目录结构的要求

    Caliburn.Micro对MVVM目录结构的要求判定规则是如下正则表达式: (?<nsbefore>([A-Za-z_]\w*\.)*)(?<subns>ViewModel ...

  9. 解析天气预报JSON数据

    解析天气预报JSON数据 JSON字符串 constjson2 = '{' + #13#10 +'"error":0,' + #13#10 +'"status" ...

  10. SpringMVC整合fastjson、easyui 乱码问题

    一.框架版本 SpringMVC:3.1.1.RELEASE fastjson:1.2.7 easyui :1.4.5 二.乱码现象    Action中使用@ResponseBody返回Json数据 ...