题目链接

首先有\(n\)条路径,每条路径就是一个点,然后尽量合并,答案就是点数-合并数。

套路拆点,源连入,出连汇,原有的边入出连。

最大流就是最大合并数,第一问解决。

然后怎么输出方案?

我是找到所有路径中的最后一个点,然后根据残量网络一直往前跳,\(dfs\)倒序输出。

#include <cstdio>
#include <queue>
#include <cstdlib>
#include <cstring>
#define INF 2147483647
using namespace std;
const int MAXN = 360;
const int MAXM = 16010;
struct point{
int x, y, time;
}Now;
queue <int> q;
struct Edge{
int from, to, next, rest;
}e[MAXM];
int head[MAXN], num = 1, s, t, now, n, m, dis[MAXN], a, b;
inline void Add(int from, int to, int flow){
e[++num] = (Edge){ from, to, head[from], flow }; head[from] = num;
e[++num] = (Edge){ to, from, head[to], 0 }; head[to] = num;
}
int re(){
memset(dis, 0, sizeof dis);
q.push(s); dis[s] = 1;
while(q.size()){
now = q.front(); q.pop();
for(int i = head[now]; i; i = e[i].next)
if(e[i].rest && !dis[e[i].to])
dis[e[i].to] = dis[now] + 1, q.push(e[i].to);
}
return dis[t];
}
int find(int u, int flow){
if(u == t || !flow) return flow;
int sum = 0, T;
for(int i = head[u]; i; i = e[i].next)
if(e[i].rest && dis[e[i].to] == dis[u] + 1){
T = find(e[i].to, min(flow - sum, e[i].rest));
e[i].rest -= T; e[i ^ 1].rest += T; sum += T;
}
if(!sum) dis[u] = 0;
return sum;
}
int dinic(){
int ans = 0;
while(re()) ans += find(s, INF);
return ans;
}
void dfs(int u){
for(int i = head[u + n]; i; i = e[i].next)
if(e[i].to <= n && e[i].rest)
dfs(e[i].to);
printf("%d ", u);
}
int ans;
int main(){
scanf("%d%d", &n, &m); s = 345; t = 350;
for(int i = 1; i <= m; ++i){
scanf("%d%d", &a, &b);
Add(a, b + n, 1);
}
for(int i = 1; i <= n; ++i)
Add(s, i, 1), Add(i + n, t, 1);
ans = n - dinic();
for(int i = 1; i <= n; ++i){
int flag = 1;
for(int j = head[i]; j; j = e[j].next)
if(e[j].to > n && e[j].to <= 2 * n && !e[j].rest){
flag = 0; break;
}
if(flag) dfs(i),
putchar('\n');
}
printf("%d\n", ans);
return 0;
}

【洛谷 P2764】 最小路径覆盖问题(最大流)的更多相关文章

  1. 洛谷 P2764 最小路径覆盖问题 解题报告

    P2764 最小路径覆盖问题 问题描述: 给定有向图\(G=(V,E)\).设\(P\) 是\(G\) 的一个简单路(顶点不相交)的集合.如果\(V\) 中每个顶点恰好在\(P\) 的一条路上,则称\ ...

  2. 洛谷 P2764 最小路径覆盖问题【最大流+拆点+路径输出】

    题目链接:https://www.luogu.org/problemnew/show/P2764 题目描述 «问题描述: 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V ...

  3. 洛谷P2764 最小路径覆盖问题

    有向无环图的最小路径点覆盖 最小路径覆盖就是给定一张DAG,要求用尽量少的不相交的简单路径,覆盖有向无环图的所有顶点. 有定理:顶点数-路径数=被覆盖的边数. 要理解的话可以从两个方向: 假设DAG已 ...

  4. 【刷题】洛谷 P2764 最小路径覆盖问题

    题目描述 «问题描述: 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖.P 中路径可以从V 的任何一个顶点开 ...

  5. 洛谷P2764 最小路径覆盖问题(最大流)

    传送门 先说做法:把原图拆成一个二分图,每一个点被拆成$A_i,B_i$,若原图中存在边$(u,v)$,则连边$(A_u,B_v)$,然后$S$对所有$A$连边,所有$B$对$T$连边,然后跑一个最大 ...

  6. 洛谷 P2764 最小路径覆盖问题【匈牙利算法】

    经典二分图匹配问题.把每个点拆成两个,对于原图中的每一条边(i,j)连接(i,j+n),最小路径覆盖就是点数n-二分图最大匹配.方案直接顺着匹配dsf.. #include<iostream&g ...

  7. 洛谷 P2764(最小路径覆盖=节点数-最大匹配)

    给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖.P 中路径可以从V 的任何一个顶点开始,长度也是任意的,特别 ...

  8. 洛谷P2764 最小路径覆盖问题(二分图)

    题意 给出一张有向无环图,求出用最少的路径覆盖整张图,要求路径在定点处不相交 输出方案 Sol 定理:路径覆盖 = 定点数 - 二分图最大匹配数 直接上匈牙利 输出方案的话就不断的从一个点跳匹配边 # ...

  9. 洛谷 [P2764]最小路径覆盖问题

    二分图应用模版 #include <iostream> #include <cstdio> #include <algorithm> #include <cs ...

  10. 洛谷-p2764(最小路径覆盖)(网络流24题)

    #include<iostream> #include<algorithm> #include<queue> #include<cstring> #in ...

随机推荐

  1. 【week8】psp~~进度条

    本周psp 项目 内容 开始时间 结束时间 中断时间 净时间 10月7日 星期一 论文 看生物信息方面的论文 10:00 12:00 5 115 写代码 注册信息从前台传入servlet 18:00 ...

  2. PAT 甲级 1077 Kuchiguse

    https://pintia.cn/problem-sets/994805342720868352/problems/994805390896644096 The Japanese language ...

  3. php判断是否https

    function is_https() { if ( !empty($_SERVER['HTTPS']) && strtolower($_SERVER['HTTPS']) !== 'o ...

  4. php中扩展pecl与pear

    要为大家分享的内容是PECL 和 PEAR 他们之间的不同和相同之处. PEAR 是“PHP Extension and Application Repository”的缩写,即PHP扩展和应用仓库. ...

  5. smokping的部署使用

    本文是介绍如何的使用smokeping来监控idc机房的网络质量情况,从监控图上的延时与丢包能分辨出你机房的网络是否稳定,是否为多线,是否为BGP机房,到各城市的3个运行商网络各是什么情况,如果出现问 ...

  6. Oracle判断字段中是否包含中文(若有,取出该中文的方法)

    一.问题说明 在处理数据的时候,需要判断某个字段字符串中是否有中文,若有则取出中文. 二.解决办法 首先如何判断某个字段字符串中是否有中文.这里介绍三种方法: 1.采用ASCIISTR函数 说明:AS ...

  7. 【EF】EF框架 Code First Fluent API

    在Code First方法中,还可以通过Fluent API的方式来处理实体与数据表之间的映射关系. 要使用Fluent API必须在构造自定义的DbContext时,重写OnModelCreatin ...

  8. BZOJ3745 COCI2015Norma(分治)

    完全想不到地,考虑分治. 对区间[l,r],将左端点x由mid不断左移,右边记录最右的p满足max[mid+1,p]<=max[x,mid],q满足min[mid+1,q]>=min[x, ...

  9. 51nod1238 最小公倍数之和 V3 莫比乌斯函数 杜教筛

    题意:求\(\sum_{i = 1}^{n}\sum_{j = 1}^{n}lcm(i, j)\). 题解:虽然网上很多题解说用mu卡不过去,,,不过试了一下貌似时间还挺充足的,..也许有时间用phi ...

  10. Linux内核分析第六周学习笔记——分析Linux内核创建一个新进程的过程

    Linux内核分析第六周学习笔记--分析Linux内核创建一个新进程的过程 zl + <Linux内核分析>MOOC课程http://mooc.study.163.com/course/U ...