题目链接

首先有\(n\)条路径,每条路径就是一个点,然后尽量合并,答案就是点数-合并数。

套路拆点,源连入,出连汇,原有的边入出连。

最大流就是最大合并数,第一问解决。

然后怎么输出方案?

我是找到所有路径中的最后一个点,然后根据残量网络一直往前跳,\(dfs\)倒序输出。

#include <cstdio>
#include <queue>
#include <cstdlib>
#include <cstring>
#define INF 2147483647
using namespace std;
const int MAXN = 360;
const int MAXM = 16010;
struct point{
int x, y, time;
}Now;
queue <int> q;
struct Edge{
int from, to, next, rest;
}e[MAXM];
int head[MAXN], num = 1, s, t, now, n, m, dis[MAXN], a, b;
inline void Add(int from, int to, int flow){
e[++num] = (Edge){ from, to, head[from], flow }; head[from] = num;
e[++num] = (Edge){ to, from, head[to], 0 }; head[to] = num;
}
int re(){
memset(dis, 0, sizeof dis);
q.push(s); dis[s] = 1;
while(q.size()){
now = q.front(); q.pop();
for(int i = head[now]; i; i = e[i].next)
if(e[i].rest && !dis[e[i].to])
dis[e[i].to] = dis[now] + 1, q.push(e[i].to);
}
return dis[t];
}
int find(int u, int flow){
if(u == t || !flow) return flow;
int sum = 0, T;
for(int i = head[u]; i; i = e[i].next)
if(e[i].rest && dis[e[i].to] == dis[u] + 1){
T = find(e[i].to, min(flow - sum, e[i].rest));
e[i].rest -= T; e[i ^ 1].rest += T; sum += T;
}
if(!sum) dis[u] = 0;
return sum;
}
int dinic(){
int ans = 0;
while(re()) ans += find(s, INF);
return ans;
}
void dfs(int u){
for(int i = head[u + n]; i; i = e[i].next)
if(e[i].to <= n && e[i].rest)
dfs(e[i].to);
printf("%d ", u);
}
int ans;
int main(){
scanf("%d%d", &n, &m); s = 345; t = 350;
for(int i = 1; i <= m; ++i){
scanf("%d%d", &a, &b);
Add(a, b + n, 1);
}
for(int i = 1; i <= n; ++i)
Add(s, i, 1), Add(i + n, t, 1);
ans = n - dinic();
for(int i = 1; i <= n; ++i){
int flag = 1;
for(int j = head[i]; j; j = e[j].next)
if(e[j].to > n && e[j].to <= 2 * n && !e[j].rest){
flag = 0; break;
}
if(flag) dfs(i),
putchar('\n');
}
printf("%d\n", ans);
return 0;
}

【洛谷 P2764】 最小路径覆盖问题(最大流)的更多相关文章

  1. 洛谷 P2764 最小路径覆盖问题 解题报告

    P2764 最小路径覆盖问题 问题描述: 给定有向图\(G=(V,E)\).设\(P\) 是\(G\) 的一个简单路(顶点不相交)的集合.如果\(V\) 中每个顶点恰好在\(P\) 的一条路上,则称\ ...

  2. 洛谷 P2764 最小路径覆盖问题【最大流+拆点+路径输出】

    题目链接:https://www.luogu.org/problemnew/show/P2764 题目描述 «问题描述: 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V ...

  3. 洛谷P2764 最小路径覆盖问题

    有向无环图的最小路径点覆盖 最小路径覆盖就是给定一张DAG,要求用尽量少的不相交的简单路径,覆盖有向无环图的所有顶点. 有定理:顶点数-路径数=被覆盖的边数. 要理解的话可以从两个方向: 假设DAG已 ...

  4. 【刷题】洛谷 P2764 最小路径覆盖问题

    题目描述 «问题描述: 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖.P 中路径可以从V 的任何一个顶点开 ...

  5. 洛谷P2764 最小路径覆盖问题(最大流)

    传送门 先说做法:把原图拆成一个二分图,每一个点被拆成$A_i,B_i$,若原图中存在边$(u,v)$,则连边$(A_u,B_v)$,然后$S$对所有$A$连边,所有$B$对$T$连边,然后跑一个最大 ...

  6. 洛谷 P2764 最小路径覆盖问题【匈牙利算法】

    经典二分图匹配问题.把每个点拆成两个,对于原图中的每一条边(i,j)连接(i,j+n),最小路径覆盖就是点数n-二分图最大匹配.方案直接顺着匹配dsf.. #include<iostream&g ...

  7. 洛谷 P2764(最小路径覆盖=节点数-最大匹配)

    给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖.P 中路径可以从V 的任何一个顶点开始,长度也是任意的,特别 ...

  8. 洛谷P2764 最小路径覆盖问题(二分图)

    题意 给出一张有向无环图,求出用最少的路径覆盖整张图,要求路径在定点处不相交 输出方案 Sol 定理:路径覆盖 = 定点数 - 二分图最大匹配数 直接上匈牙利 输出方案的话就不断的从一个点跳匹配边 # ...

  9. 洛谷 [P2764]最小路径覆盖问题

    二分图应用模版 #include <iostream> #include <cstdio> #include <algorithm> #include <cs ...

  10. 洛谷-p2764(最小路径覆盖)(网络流24题)

    #include<iostream> #include<algorithm> #include<queue> #include<cstring> #in ...

随机推荐

  1. 【BioCode】根据seq与位点信息截取窗口

    代码说明 sequence24371.txt 以上为所有氨基酸的编号,序列,与位点标记.根据标记为“1”的位点,截取窗口:如下(实验结果): 图示为一个窗口为12的蛋白质片段 2N+1=25: 实现代 ...

  2. Hive查看执行日志

    HIVE-如何查看执行日志 HIVE既然是运行在hadoop上,最后又被翻译为MapReduce程序,通过yarn来执行.所以我们如果想解决HIVE中出现的错误,需要分成几个过程 HIVE自身翻译成为 ...

  3. Halcon 笔记3 形态学

    Halcon 三大数据类型: (1)图像 (2)区域 (3)XLD  查看时间工具 如果想让图像减少,则进行腐蚀(或者使用开运算),反之,则进行膨胀(或闭运算) 腐蚀后再进行膨胀,相当于进行开运算.因 ...

  4. PHP中面向对象编程思想的3个特征

    面向对象编程思想的3个特征: 封装: 无非是一个大的指向思想,目的是为了将一个类设计得更为健壮! 其基本做法是: 尽可能地将一个类的成员私有化,只开放那些必不可少的对外的属性或方法,能private的 ...

  5. 【bzoj2829】信用卡凸包 凸包

    题目描述 输入 输出 样例输入 26.0 2.0 0.00.0 0.0 0.02.0 -2.0 1.5707963268 样例输出 21.66 题解 凸包 傻逼题,答案显然为:所有圆心构成的凸包周长+ ...

  6. CSS单位-长度

    css中的长度单位有很多,不同的单位在特定的需求下能够有相当不错的表现,随着css3的发布,又有了一些新的单位添加进来,使我们在做前端页面的时候能够有更多的选择,更方便快捷的达到我们预期的效果. 正题 ...

  7. C++解析(30):关于指针判别、构造异常和模板二义性的疑问

    0.目录 1.指针的判别 2.构造中的异常 2.1 如果构造函数中抛出异常会发生什么? 2.2 如果析构函数中抛出异常会发生什么? 3.令人迷惑的写法 3.1 模板中的二义性 3.2 函数异常声明 4 ...

  8. Connections between cities HDU - 2874(最短路树 lca )

    题意: 给出n个点m条边的图,c次询问 求询问中两个点间的最短距离. 解析: Floyd会T,所以用到了最短路树..具体思想为: 设k为u和v的最近公共祖先 d[i] 为祖结点到i的最短距离  则di ...

  9. 【BZOJ4184】shallot(线段树分治,线性基)

    [BZOJ4184]shallot(线段树分治,线性基) 题面 权限题啊.....好烦.. Description 小苗去市场上买了一捆小葱苗,她突然一时兴起,于是她在每颗小葱苗上写上一个数字,然后把 ...

  10. 专题训练之区间DP

    例题:以下例题部分的内容来自https://blog.csdn.net/my_sunshine26/article/details/77141398 一.石子合并问题 1.(NYOJ737)http: ...