2483: Pku2279 Mr. Young's Picture Permutations

Time Limit: 1 Sec  Memory Limit: 128 MB

Description

 
Mr. Young wishes to take a picture of his class. The students will stand in rows with each row no longer than the row behind it and the left ends of the rows aligned. For instance, 12 students could be arranged in rows (from back to front) of 5, 3, 3 and 1 students.

X X X X X

X X X

X X X

X

In addition, Mr. Young wants the students in each row arranged so that heights decrease from left to right. Also, student heights should decrease from the back to the front. Thinking about it, Mr. Young sees that for the 12-student example, there are at least two ways to arrange the students (with 1 as the tallest etc.):

 1  2  3  4  5     1  5  8 11 12

6 7 8 2 6 9

9 10 11 3 7 10

12 4

Mr. Young wonders how many different arrangements of the students there might be for a given arrangement of rows. He tries counting by hand starting with rows of 3, 2 and 1 and counts 16 arrangements:

123 123 124 124 125 125 126 126 134 134 135 135 136 136 145 146

45 46 35 36 34 36 34 35 25 26 24 26 24 25 26 25

6 5 6 5 6 4 5 4 6 5 6 4 5 4 3 3

Mr. Young sees that counting by hand is not going to be very effective for any reasonable number of students so he asks you to help out by writing a computer program to determine the number of different arrangements of students for a given set of rows.

杨先生要给他的学生们拍照片。首先,站队状况是确定的,若第i行站了a[i]个人,则有a[1] ≥ a[2] ≥ ... ≥ a[n],所有的行都是靠左对齐的。并且,在同一行和同一列里面,从左到右或者从上到下身高都是递减的。现在所有学生的身高都不相同,学生数不超过30个,行数不超过5。你需要求出所有可能的排队方法的总数。

Input

The input for each problem instance will consist of two lines. The first line gives the number of rows, k, as a decimal integer. The second line contains the lengths of the rows from back to front (n1, n2,..., nk) as decimal integers separated by a single space. The problem set ends with a line with a row count of 0. There will never be more than 5 rows and the total number of students, N, (sum of the row lengths) will be at most 30.

Output

The output for each problem instance shall be the number of arrangements of the N students into the given rows so that the heights decrease along each row from left to right and along each column from back to front as a decimal integer. (Assume all heights are distinct.) The result of each problem instance should be on a separate line. The input data will be chosen so that the result will always fit in an unsigned 32 bit integer.

Sample Input

1
30
5
1 1 1 1 1
3
3 2 1
4
5 3 3 1
5
6 5 4 3 2
2
15 15
0

Sample Output

1
1
16
4158
141892608
9694845

HINT

先介绍一下什么是杨氏矩阵(Young tableau)//允许我转载一下 QwQ   出处:https://www.zhihu.com/question/52335435/answer/130097881

杨氏矩阵是这样一类带限制的矩阵:
  1. 矩阵里同一行的元素,左边的元素小于右边的元素。
  2. 矩阵里同一列的元素,上边的元素小于下边的元素。

而问题中所求的是排列,可以双射到它的逆排列,统计逆排列的个数,具体来说,就是求在排列里的排名,从而转化为将填充到矩阵中,问有多少种方法满足杨氏矩阵的限制。

固定矩阵形态,求有多少种本质不同的杨氏矩阵,这个问题是非常经典的,可以使用钩子公式(Hook length formula)求解。
定义表示矩阵里满足位置个数,则本质不同的杨氏矩阵个数是

那么对于这个问题,满足条件的排列数就是,是的。

 
#include<map>
#include<cmath>
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define ll long long
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,a[],sum,ji[];
bool mp[][];
ll ans=;
ll ksm(ll a,int b)
{
ll s=;
for(;b;b>>=,a*=a) if(b&) s*=a;
return s;
}
int main()
{
int i,j,h,k;
while(n=read())
{
ans=;sum=;
memset(ji,,sizeof(ji));
memset(mp,,sizeof(mp));
for(i=;i<=n;i++)
{
a[i]=read();sum+=a[i];
for(j=;j<=a[i];j++) mp[i][j]=;
}
for(i=;i<=sum;i++)
{
int tp=i;
for(j=;j<=tp;j++)
while(tp%j==) tp/=j,ji[j]++;
}
for(i=;i<=n;i++)
{
for(j=;j<=a[i];j++)
{
h=a[i]-j;
for(k=i;k<=n;k++) if(mp[k][j]) h++;
int tp=h;
for(k=;k<=tp;k++)
while(tp%k==) tp/=k,ji[k]--;
}
}
for(i=;i<=;i++) ans*=ksm((ll)i,ji[i]);
printf("%lld\n",ans);
}
return ;
}

bzoj 2483: Pku2279 Mr. Young's Picture Permutations -- 钩子公式的更多相关文章

  1. POJ2279 Mr Young's Picture Permutations

    POJ2279 Mr Young's Picture Permutations 描述: 有N个学生合影,站成左对齐的k排,每行分别有N1,N2…NK个人,第一排站最后,第k排站之前.学生身高依次是1… ...

  2. 【题解】POJ2279 Mr.Young′s Picture Permutations dp

    [题解]POJ2279 Mr.Young′s Picture Permutations dp 钦定从小往大放,然后直接dp. \(dp(t1,t2,t3,t4,t5)\)代表每一行多少人,判断边界就能 ...

  3. 轮廓线DP:poj 2279 Mr. Young's Picture Permutations

    poj 2279 Mr. Young's Picture Permutations \(solution:\) 首先摘取一些关键词:(每行不超过它后面的行)(每排学生安排高度从左到右减少)(学生的高度 ...

  4. Mr. Young's Picture Permutations

    Mr. Young's Picture Permutations 给出一个有k列的网格图,以及每列图形的高度\(n_i\),下端对齐,保证高度递减,设有n个网格,询问向其中填1~n保证每行每列单调递增 ...

  5. 【杨氏矩阵+勾长公式】POJ 2279 Mr. Young's Picture Permutations

    Description Mr. Young wishes to take a picture of his class. The students will stand in rows with ea ...

  6. poj2279——Mr. Young's Picture Permutations

    Description Mr. Young wishes to take a picture of his class. The students will stand in rows with ea ...

  7. [POJ 2279] Mr. Young's Picture Permutations

    [题目链接] http://poj.org/problem?id=2279 [算法] 杨氏矩阵与勾长公式 [代码] #include <algorithm> #include <bi ...

  8. POJ P2279 Mr. Young's Picture Permutations 题解

    每日一题 day14 打卡 Analysis 五维dpf[a1,a2,a3,a4,a5]表示各排从左端起分别占了a1,a2,a3,a4,a5个人时合影方案数量然后我们枚举a1,a2,a3,a4,a5从 ...

  9. poj2279 Mr. Young's Picture Permutations[勾长公式 or 线性DP]

    若干人左对齐站成最多5行,给定每行站多少个,列数从第一排开始往后递减.要求身高从每排从左到右递增(我将题意篡改了便于理解233),每列从前向后递增.每个人身高为1...n(n<=30)中的一个数 ...

随机推荐

  1. Caffe提取任意层特征并进行可视化

    现在Caffe的Matlab接口 (matcaffe3) 和python接口都非常强大, 可以直接提取任意层的feature map以及parameters, 所以本文仅仅作为参考, 更多最新的信息请 ...

  2. VScode格式化ESlint

    打开 文件-首选项- 设置 mac可以按快捷键(command和,) 然后在右上角的省略号选择open setting json { // vscode默认启用了根据文件类型自动设置tabsize的选 ...

  3. [转载]FFmpeg完美入门[1] - FFmpeg介绍及安装

    1 FFmpeg简介 FFmpeg是一个开源免费跨平台的视频和音频流方案,属于自由软件,采用LGPL或GPL许可证(依据你选择的组件).它提供了录制.转换以及流化音视 频的完整解决方案.它包含了非常先 ...

  4. java并发容器

    同步容器将所有对容器状态的访问都串行化,以实现线程安全性.这种方式的缺点是严重降低并发性.Java 5.0提供了多种并发容器来改进同步容器的性能.如ConcurrentHashMap代替同步且基于散列 ...

  5. Java的Timer定时器

    Timer主要用于Java线程里指定时间或周期运行任务,它是线程安全的,但不提供实时性(real-time)保证. 上面提到了守护线程的概念. Java分为两种线程:用户线程和守护线程. 所谓守护线程 ...

  6. 制作一棵ztree

    我们在做web项目时,常会用到一些树形菜单.在此,我们利用ztree实现树形菜单的效果.zTree 是一个依靠 jQuery 实现的多功能 “树插件”.优异的性能.灵活的配置.多种功能的组合是 zTr ...

  7. IT行业经典面试技巧及方法思路。

    问题1:为什么从上家公司离职?”能说说原因吗? 首先,作为一个从事招聘的HR,并不认为追问面试者为什么从上一家公司离职是个明智的做法起码不应该在面试一开始就抛出这个问题,一个较为明显的原因是因为这会引 ...

  8. Appium+python 一个简单的登录测试实例

    # coding=utf-8 from appium import webdriver import time import unittest import os import HTMLTestRun ...

  9. ORA-**,oracle 12c操作问题

    https://blog.csdn.net/typa01_kk/article/details/41924321

  10. netty 基础知识

    http://my.oschina.net/bieber/blog/406799 线程模型 http://hongweiyi.com/2014/01/netty-4-x-thread-model/ h ...