思路:

已知:

要生成曼哈顿距离最小生成树,一个点最多和四周8个点连线,那8个点分别是将那个点四周360度平分成8个区间,每个区间里面和那个点曼哈顿距离最小的点,所以如果有n个点,那么最多有4n条边,然后就可以用kruskal算法去做。

 #include <iostream>    //poj3241 曼哈顿距离最小生成树第k大的边
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <climits>
#define mid ((l+r)>>1)
using namespace std; int ent; int temp1,temp2,temp3; int fa[]; class Point
{
public:
int x,y,id;
} point[]; class Tree
{
public:
int index,current;
} tree[<<]; class Edge
{
public:
int s,t,dis;
} edge[]; bool cmp(Point a,Point b)
{
if(a.x==b.x)
return a.y<b.y;
return a.x<b.x;
} bool cmp2(Edge a,Edge b)
{
return a.dis<b.dis;
} int get_ans(Point a)
{
return a.y-a.x+;
} int get_dis(int a,int b)
{
return point[b].x+point[b].y-point[a].x-point[a].y;
} void build(int l,int r,int n)
{
tree[n].index=INT_MAX;
if(l==r)
{
tree[n].current=l;
return;
}
build(l,mid,n<<);
build(mid+,r,n<<|);
} void update(int l,int r,int n,int current,int aim)
{
int ans=point[aim].x+point[aim].y;
if(ans<tree[n].index)
tree[n].index=ans;
if(l==r)
{
if(ans==tree[n].index)
tree[n].current=aim;
return;
}
if(mid<current)
update(mid+,r,n<<|,current,aim);
else update(l,mid,n<<,current,aim);
} void search(int l,int r,int n,int current,int aim)
{
if(l==r)
{
if(tree[n].index<temp1)
{
temp1=tree[n].index;
temp2=tree[n].current;
}
return;
}
if(mid<current)
search(mid+,r,n<<|,current,aim);
else if(l>=current)
{
if(tree[n<<].index<tree[n<<|].index)
search(l,mid,n<<,current,aim);
else search(mid+,r,n<<|,current,aim);
}
else
{
if(tree[n<<].index>=tree[n<<|].index)
search(mid+,r,n<<|,current,aim);
else
{
search(l,mid,n<<,current,aim);
search(mid+,r,n<<|,current,aim);
}
}
} int find(int x)
{
int temp=x;
while(x!=fa[x])
x=fa[x];
while(temp!=fa[temp])
{
temp=fa[temp];
fa[temp]=x;
}
return x;
} int pos[];
bool sign[];
int ans[]; int main()
{
int n,k;
while(cin>>n>>k)
{
int m=;
ent=;
memset(sign,false,sizeof(sign));
for(int i=; i<n; i++)
{
scanf("%d%d",&point[i].x,&point[i].y);
point[i].id=i;
}
for(int tot=; tot<; tot++)
{
if(tot==)
{
for(int i=; i<n; i++)
point[i].y=-point[i].y;
}
if(tot==||tot==)
{
for(int i=; i<n; i++)
{
point[i].x=point[i].x+point[i].y;
point[i].y=point[i].x-point[i].y;
point[i].x=point[i].x-point[i].y;
}
}
for(int i=; i<n; i++)
{
int temp=get_ans(point[i]);
if(!sign[temp])
{
pos[m++]=temp;
sign[temp]=true;
}
}
sort(pos,pos+m);
for(int i=; i<m; i++)
{
ans[pos[i]]=i;
}
sort(point,point+n,cmp);
build(,m-,);
for(int i=n-; i>; i--)
{
update(,m-,,ans[get_ans(point[i])],i);
temp1=INT_MAX;
search(,m-,,ans[get_ans(point[i-])],i-);
if(temp1!=INT_MAX)
{
edge[ent].s=point[i-].id,edge[ent].t=point[temp2].id;
edge[ent++].dis=get_dis(i-,temp2);
}
}
}
sort(edge,edge+ent,cmp2);
for(int i=; i<=n; i++)
fa[i]=i;
int tot=;
for(int i=; i<ent; i++)
{
int x=find(edge[i].s);
int y=find(edge[i].t);
if(x==y)
continue;
else
{
fa[y]=x;
tot++;
}
if(tot==n-k)
{
cout<<edge[i].dis<<endl;
break;
}
}
}
return ;
}

poj3241 曼哈顿最小距离生成树第k大的边的更多相关文章

  1. POJ3241 最小曼哈顿距离生成树 - 真有趣哇

    目录 Catalog Solution: (有任何问题欢迎留言或私聊 && 欢迎交流讨论哦 Catalog Problem:Portal传送门  原题目描述在最下面.  给你n个坐标, ...

  2. poj 2349 Arctic Network(最小生成树的第k大边证明)

    题目链接: http://poj.org/problem?id=2349 题目大意: 有n个警戒部队,现在要把这n个警戒部队编入一个通信网络, 有两种方式链接警戒部队:1,用卫星信道可以链接无穷远的部 ...

  3. [LeetCode] Kth Largest Element in an Array 数组中第k大的数字

    Find the kth largest element in an unsorted array. Note that it is the kth largest element in the so ...

  4. POJ2985 The k-th Largest Group[树状数组求第k大值+并查集||treap+并查集]

    The k-th Largest Group Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 8807   Accepted ...

  5. 区间第K大(一)

    Problem: 给定无序序列S:[b, e),求S中第K大的元素. Solution 1.裸排序 2.现将区间均分成两段,S1, S2,对S1,S2分别排序,然后

  6. 寻找数组中的第K大的元素,多种解法以及分析

    遇到了一个很简单而有意思的问题,可以看出不同的算法策略对这个问题求解的优化过程.问题:寻找数组中的第K大的元素. 最简单的想法是直接进行排序,算法复杂度是O(N*logN).这么做很明显比较低效率,因 ...

  7. [51nod1685]第k大区间

    Description 定义一个长度为奇数的区间的值为其所包含的的元素的中位数. 现给出$n$个数,求将所有长度为奇数的区间的值排序后,第$k$大的值为多少. Input 第一行两个数$n$和$k$. ...

  8. 数据结构2 静态区间第K大/第K小

    给定数组$A[1...N]$, 区间$[L,R]$中第$K$大/小的数的指将$A[L...R]$中的数从大到小/从小到大排序后的第$K$个. "静态"指的是不带修改. 这个问题有多 ...

  9. POJ 2985 The k-th Largest Group(树状数组 并查集/查找第k大的数)

    传送门 The k-th Largest Group Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 8690   Acce ...

随机推荐

  1. x-code快捷键

    关于xcode  可设偏好设置 command+,清空缓存 可设隐藏xcode command+h隐藏其它 command+option+h显示全部 可设退出xcode command+q 文件相关: ...

  2. applicationContext.xml和web.xml的一些配置

    applicationContext.xml <!-- test环境 --> <beans profile="test"> <context:prop ...

  3. 《C与指针》第一章练习

    本章例程 程序1.1 重排字符 #include <stdio.h> #include <stdlib.h> #include <string.h> #define ...

  4. 51nod-1732 婚姻介绍所(后缀数组)

    题目大意:回答任意两个子串的最长公共前缀. 题目分析:后缀数组的模板题.但是输入输出都要外挂. 代码如下: # include<iostream> # include<cstdio& ...

  5. Node.js知识点

    1. 入口文件app.js里的路由,按顺序执行: 2.

  6. System.Windows.Media.Imageing.BItmapImage 这么用才不会占用文件

    // Read byte[] from png file BinaryReader binReader = new BinaryReader(File.Open(filepath, FileMode. ...

  7. php分10个不同等级压缩优化图片

    今天找到一个php写的压缩图片程序,可以分10个等级(0-9)来压缩,0等级时压缩比率不是很大,图片不会失真:随着压缩等级不断增大,图片会变得越来越不清晰,通常压缩后图片大小可以减少到原来的50%,压 ...

  8. Delphi ActiveX Form的使用实例

    Delphi ActiveX Form的使用实例 By knityster 1. ActiveX控件简介 ActiveX控件也就是一般所说的OCX控件,它是ActiveX技术的一部分. ActiveX ...

  9. [内核同步]Linux内核同步机制之completion

    转自:http://blog.csdn.net/bullbat/article/details/7401688 内核编程中常见的一种模式是,在当前线程之外初始化某个活动,然后等待该活动的结束.这个活动 ...

  10. php利用zookeeper作dispatcher服务器

    ===== https://blog.eood.cn/php_share_memory 最常见的apc 可以缓存php的opcode提高应用的性能,可以在同个php-fpm进程池间共享数据 常见功能: ...