POJ 1258 Agri-Net(最小生成树 Prim+Kruskal)
题目链接: 传送门
Agri-Net
Time Limit: 1000MS Memory Limit: 10000K
Description
Farmer John has been elected mayor of his town! One of his campaign promises was to bring internet connectivity to all farms in the area. He needs your help, of course.
Farmer John ordered a high speed connection for his farm and is going to share his connectivity with the other farmers. To minimize cost, he wants to lay the minimum amount of optical fiber to connect his farm to all the other farms.
Given a list of how much fiber it takes to connect each pair of farms, you must find the minimum amount of fiber needed to connect them all together. Each farm must connect to some other farm such that a packet can flow from any one farm to any other farm.
The distance between any two farms will not exceed 100,000.
Input
The input includes several cases. For each case, the first line contains the number of farms, N (3 <= N <= 100). The following lines contain the N x N conectivity matrix, where each element shows the distance from on farm to another. Logically, they are N lines of N space-separated integers. Physically, they are limited in length to 80 characters, so some lines continue onto others. Of course, the diagonal will be 0, since the distance from farm i to itself is not interesting for this problem.
Output
For each case, output a single integer length that is the sum of the minimum length of fiber required to connect the entire set of farms.
Sample Input
4
0 4 9 21
4 0 8 17
9 8 0 16
21 17 16 0
Sample Output
28
Prim算法O(V^2)
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int INF = 0x3f3f3f3f;
const int MAX_V = 105;
int edge[MAX_V][MAX_V];
int dis[MAX_V];
bool vis[MAX_V];
int N;
int prim()
{
memset(dis,INF,sizeof(dis));
memset(vis,false,sizeof(vis));
for (int i = 1;i <= N;i++)
{
dis[i] = edge[i][1];
}
dis[1] = 0;
vis[1] = true;
int sum = 0;
for (int i = 1;i < N;i++)
{
int tmp = INF,pos;
for (int j = 1;j <= N;j++)
{
if(!vis[j] && tmp > dis[j])
{
tmp = dis[j];
pos = j;
}
}
if (tmp == INF) return 0;
vis[pos] = true;
sum += dis[pos];
for(int j = 1;j <= N;j++)
{
if (!vis[j] && edge[pos][j] < dis[j])
{
dis[j] = edge[pos][j];
}
}
}
return sum;
}
int main()
{
while (~scanf("%d",&N))
{
for (int i = 1;i <= N;i++)
{
for (int j = 1;j <= N;j++)
{
scanf("%d",&edge[i][j]);
}
}
int res = prim();
printf("%d\n",res);
}
return 0;
}
Prim算法O(ElogV)
#include<iostream>
#include<vector>
#include<queue>
#include<utility>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef __int64 LL;
typedef pair<int,int>pii; //first 最短距离 second 顶点编号
const int INF = 0x3f3f3f3f;
const int MAX = 105;
struct edge{
int to,cost;
edge(int t,int c):to(t),cost(c){}
};
vector<edge>G[MAX];
int N,dis[MAX];
bool vis[MAX];
int prim()
{
int res = 0;
priority_queue<pii,vector<pii>,greater<pii> >que;
memset(dis,INF,sizeof(dis));
memset(vis,false,sizeof(vis));
dis[1] = 0;
que.push(pii(0,1));
while (!que.empty())
{
pii p = que.top();
que.pop();
int v = p.second;
if (vis[v] || p.first > dis[v]) continue;
vis[v] = true;
res += dis[v];
for (int i = 0;i < G[v].size();i++)
{
edge e = G[v][i];
if (dis[e.to] > e.cost)
{
dis[e.to] = e.cost;
que.push(pii(dis[e.to],e.to));
}
}
}
return res;
}
int main()
{
while (~scanf("%d",&N))
{
int tmp;
for (int i = 1;i <= N;i++)
{
G[i].clear();
for (int j = 1;j <= N;j++)
{
scanf("%d",&tmp);
G[i].push_back(edge(j,tmp));
}
}
int res = prim();
printf("%d\n",res);
}
return 0;
}
Kruskal算法O(ElogV)
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int INF = 0x3f3f3f3f;
const int MAX = (105*105-105)/2;
struct Edge{
int u,v,w;
};
int N,father[MAX],rk[MAX];
struct Edge edge[MAX];
bool cmp(Edge x,Edge y)
{
return x.w < y.w;
}
void init()
{
memset(father,0,sizeof(father));
memset(rk,0,sizeof(rk));
for (int i = 0;i <= N;i++)
{
father[i] = i;
}
}
int find(int x)
{
int r = x;
while (father[r] != r)
{
r = father[r];
}
int i = x,j;
while (i != r)
{
j = father[i];
father[i] = r;
i = j;
}
return r;
}
/*int find(int x)
{
return x == father[x]?x:father[x] = find(father[x]);
}*/
void unite(int x,int y)
{
int fx,fy;
fx = find(x);
fy = find(y);
if (fx == fy) return;
if (rk[fx] < rk[fy])
{
father[fx] = fy;
}
else
{
father[fy] = fx;
if (rk[x] == rk[y])
{
rk[x]++;
}
}
}
/*void unite(int x,int y)
{
int fx = find(x),fy = find(y);
if (fx != fy)
{
father[fx] = fy;
}
}*/
int main()
{
while (~scanf("%d",&N))
{
int tmp,cnt = 0,sum = 0;
for (int i = 1;i <= N;i++)
{
for (int j = 1;j <= N;j++)
{
scanf("%d",&tmp);
if (i < j)
{
edge[cnt].u = i;
edge[cnt].v = j;
edge[cnt].w = tmp;
cnt++;
}
}
}
init();
sort(edge,edge+cnt,cmp);
for (int i = 0;i < cnt;i++)
{
int x,y;
x = find(edge[i].u);
y = find(edge[i].v);
if (x != y)
{
unite(x,y);
sum += edge[i].w;
}
}
printf("%d\n",sum);
}
return 0;
}
POJ 1258 Agri-Net(最小生成树 Prim+Kruskal)的更多相关文章
- 最小生成树 Prim Kruskal
layout: post title: 最小生成树 Prim Kruskal date: 2017-04-29 tag: 数据结构和算法 --- 目录 TOC {:toc} 最小生成树Minimum ...
- 邻接矩阵c源码(构造邻接矩阵,深度优先遍历,广度优先遍历,最小生成树prim,kruskal算法)
matrix.c #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include < ...
- 数据结构学习笔记05图(最小生成树 Prim Kruskal)
最小生成树Minimum Spanning Tree 一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边. 树: 无回路 |V|个顶 ...
- 布线问题 最小生成树 prim + kruskal
1 : 第一种 prime 首先确定一个点 作为已经确定的集合 , 然后以这个点为中心 , 向没有被收录的点 , 找最短距离( 到已经确定的点 ) , 找一个已知长度的最小长度的 边 加到 s ...
- POJ 1258 Agri-Net(最小生成树,模板题)
用的是prim算法. 我用vector数组,每次求最小的dis时,不需要遍历所有的点,只需要遍历之前加入到vector数组中的点(即dis[v]!=INF的点).但其实时间也差不多,和遍历所有的点的方 ...
- POJ 1258 Agri-Net (最小生成树)
Agri-Net 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/H Description Farmer John has be ...
- POJ 1751 Highways(最小生成树&Prim)题解
思路: 一开始用Kruskal超时了,因为这是一个稠密图,边的数量最惨可能N^2,改用Prim. Prim是这样的,先选一个点(这里选1)作为集合A的起始元素,然后其他点为集合B的元素,我们要做的就是 ...
- 最小生成树-Prim&Kruskal
Prim算法 算法步骤 S:当前已经在联通块中的所有点的集合 1. dist[i] = inf 2. for n 次 t<-S外离S最近的点 利用t更新S外点到S的距离 st[t] = true ...
- 邻接表c源码(构造邻接矩阵,深度优先遍历,广度优先遍历,最小生成树prim,kruskal算法)
graph.c #include <stdio.h> #include <stdlib.h> #include <limits.h> #include " ...
随机推荐
- sql server利用开窗函数over() 进行分组统计
这是一道常见的面试题,在实际项目中经常会用到. 需求:求出以产品类别为分组,各个分组里价格最高的产品信息. 实现过程如下: declare @t table( ProductID int, Produ ...
- 单片机C语言探究--为什么变量最好要赋初值
有许多书上说,变量最好要赋初值.但是为什么要初值呢?不赋初值可能会出现什么样的意外呢?以下就我在以51单片机为MCU,Keil为编译器看到的实现现象作分析.众所周知,变量是存储在RAM中,掉电后即丢失 ...
- STM32-外部中断,没有硬件干扰就是快乐
一:触发方式 STM32 的外部中断是通过边沿来触发的,不支持电平触发: 二:外部中断分组 STM32 的每一个GPIO都能配置成一个外部中断触发源,STM32 通过根据引脚的序号不同将众多中断触发源 ...
- socket.io简单说明及在线抽奖demo
socket.io简单说明及在线抽奖demo socket.io 简介 Socket.IO可以实现实时双向的基于事件的通信. 它适用于各种平台,浏览器或设备,也同样注重可靠性和速度. socket.i ...
- 如何解决xml在eclipse下的拼写报错
进入preferences——键入“spelling”——看到勾选框:Enable spelling check,去掉勾选框,可消除eclipse下的拼写错误
- Tomcat6查看数据库的数据源信息
打开tomcat6\conf 下的 context.xml
- js-jquery-将table的td转化成可编辑的文本
1.使用插件mindmup-editabletable.js $('#table').editableTableWidget({editor: $('<textarea>')}); 2.j ...
- jquery-通过js编写弹出窗口
本文转载 本文主要是通过js动态控制div的高度,css控制浮动 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional// ...
- WordPress的have_posts()和the_post()用法解析
原文地址:http://www.phpvar.com/archives/2316.html 网上找到一篇介绍WordPress的have_posts()和the_post()用法解析的文章,觉得不错! ...
- htm.dropdownlist
@Html.DropDownList("status", new SelectList(new[] { "驳回", "确认", " ...