POJ 1258 Agri-Net(最小生成树 Prim+Kruskal)
题目链接: 传送门
Agri-Net
Time Limit: 1000MS Memory Limit: 10000K
Description
Farmer John has been elected mayor of his town! One of his campaign promises was to bring internet connectivity to all farms in the area. He needs your help, of course.
Farmer John ordered a high speed connection for his farm and is going to share his connectivity with the other farmers. To minimize cost, he wants to lay the minimum amount of optical fiber to connect his farm to all the other farms.
Given a list of how much fiber it takes to connect each pair of farms, you must find the minimum amount of fiber needed to connect them all together. Each farm must connect to some other farm such that a packet can flow from any one farm to any other farm.
The distance between any two farms will not exceed 100,000.
Input
The input includes several cases. For each case, the first line contains the number of farms, N (3 <= N <= 100). The following lines contain the N x N conectivity matrix, where each element shows the distance from on farm to another. Logically, they are N lines of N space-separated integers. Physically, they are limited in length to 80 characters, so some lines continue onto others. Of course, the diagonal will be 0, since the distance from farm i to itself is not interesting for this problem.
Output
For each case, output a single integer length that is the sum of the minimum length of fiber required to connect the entire set of farms.
Sample Input
4
0 4 9 21
4 0 8 17
9 8 0 16
21 17 16 0
Sample Output
28
Prim算法O(V^2)
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int INF = 0x3f3f3f3f;
const int MAX_V = 105;
int edge[MAX_V][MAX_V];
int dis[MAX_V];
bool vis[MAX_V];
int N;
int prim()
{
memset(dis,INF,sizeof(dis));
memset(vis,false,sizeof(vis));
for (int i = 1;i <= N;i++)
{
dis[i] = edge[i][1];
}
dis[1] = 0;
vis[1] = true;
int sum = 0;
for (int i = 1;i < N;i++)
{
int tmp = INF,pos;
for (int j = 1;j <= N;j++)
{
if(!vis[j] && tmp > dis[j])
{
tmp = dis[j];
pos = j;
}
}
if (tmp == INF) return 0;
vis[pos] = true;
sum += dis[pos];
for(int j = 1;j <= N;j++)
{
if (!vis[j] && edge[pos][j] < dis[j])
{
dis[j] = edge[pos][j];
}
}
}
return sum;
}
int main()
{
while (~scanf("%d",&N))
{
for (int i = 1;i <= N;i++)
{
for (int j = 1;j <= N;j++)
{
scanf("%d",&edge[i][j]);
}
}
int res = prim();
printf("%d\n",res);
}
return 0;
}
Prim算法O(ElogV)
#include<iostream>
#include<vector>
#include<queue>
#include<utility>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef __int64 LL;
typedef pair<int,int>pii; //first 最短距离 second 顶点编号
const int INF = 0x3f3f3f3f;
const int MAX = 105;
struct edge{
int to,cost;
edge(int t,int c):to(t),cost(c){}
};
vector<edge>G[MAX];
int N,dis[MAX];
bool vis[MAX];
int prim()
{
int res = 0;
priority_queue<pii,vector<pii>,greater<pii> >que;
memset(dis,INF,sizeof(dis));
memset(vis,false,sizeof(vis));
dis[1] = 0;
que.push(pii(0,1));
while (!que.empty())
{
pii p = que.top();
que.pop();
int v = p.second;
if (vis[v] || p.first > dis[v]) continue;
vis[v] = true;
res += dis[v];
for (int i = 0;i < G[v].size();i++)
{
edge e = G[v][i];
if (dis[e.to] > e.cost)
{
dis[e.to] = e.cost;
que.push(pii(dis[e.to],e.to));
}
}
}
return res;
}
int main()
{
while (~scanf("%d",&N))
{
int tmp;
for (int i = 1;i <= N;i++)
{
G[i].clear();
for (int j = 1;j <= N;j++)
{
scanf("%d",&tmp);
G[i].push_back(edge(j,tmp));
}
}
int res = prim();
printf("%d\n",res);
}
return 0;
}
Kruskal算法O(ElogV)
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int INF = 0x3f3f3f3f;
const int MAX = (105*105-105)/2;
struct Edge{
int u,v,w;
};
int N,father[MAX],rk[MAX];
struct Edge edge[MAX];
bool cmp(Edge x,Edge y)
{
return x.w < y.w;
}
void init()
{
memset(father,0,sizeof(father));
memset(rk,0,sizeof(rk));
for (int i = 0;i <= N;i++)
{
father[i] = i;
}
}
int find(int x)
{
int r = x;
while (father[r] != r)
{
r = father[r];
}
int i = x,j;
while (i != r)
{
j = father[i];
father[i] = r;
i = j;
}
return r;
}
/*int find(int x)
{
return x == father[x]?x:father[x] = find(father[x]);
}*/
void unite(int x,int y)
{
int fx,fy;
fx = find(x);
fy = find(y);
if (fx == fy) return;
if (rk[fx] < rk[fy])
{
father[fx] = fy;
}
else
{
father[fy] = fx;
if (rk[x] == rk[y])
{
rk[x]++;
}
}
}
/*void unite(int x,int y)
{
int fx = find(x),fy = find(y);
if (fx != fy)
{
father[fx] = fy;
}
}*/
int main()
{
while (~scanf("%d",&N))
{
int tmp,cnt = 0,sum = 0;
for (int i = 1;i <= N;i++)
{
for (int j = 1;j <= N;j++)
{
scanf("%d",&tmp);
if (i < j)
{
edge[cnt].u = i;
edge[cnt].v = j;
edge[cnt].w = tmp;
cnt++;
}
}
}
init();
sort(edge,edge+cnt,cmp);
for (int i = 0;i < cnt;i++)
{
int x,y;
x = find(edge[i].u);
y = find(edge[i].v);
if (x != y)
{
unite(x,y);
sum += edge[i].w;
}
}
printf("%d\n",sum);
}
return 0;
}
POJ 1258 Agri-Net(最小生成树 Prim+Kruskal)的更多相关文章
- 最小生成树 Prim Kruskal
layout: post title: 最小生成树 Prim Kruskal date: 2017-04-29 tag: 数据结构和算法 --- 目录 TOC {:toc} 最小生成树Minimum ...
- 邻接矩阵c源码(构造邻接矩阵,深度优先遍历,广度优先遍历,最小生成树prim,kruskal算法)
matrix.c #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include < ...
- 数据结构学习笔记05图(最小生成树 Prim Kruskal)
最小生成树Minimum Spanning Tree 一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边. 树: 无回路 |V|个顶 ...
- 布线问题 最小生成树 prim + kruskal
1 : 第一种 prime 首先确定一个点 作为已经确定的集合 , 然后以这个点为中心 , 向没有被收录的点 , 找最短距离( 到已经确定的点 ) , 找一个已知长度的最小长度的 边 加到 s ...
- POJ 1258 Agri-Net(最小生成树,模板题)
用的是prim算法. 我用vector数组,每次求最小的dis时,不需要遍历所有的点,只需要遍历之前加入到vector数组中的点(即dis[v]!=INF的点).但其实时间也差不多,和遍历所有的点的方 ...
- POJ 1258 Agri-Net (最小生成树)
Agri-Net 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/H Description Farmer John has be ...
- POJ 1751 Highways(最小生成树&Prim)题解
思路: 一开始用Kruskal超时了,因为这是一个稠密图,边的数量最惨可能N^2,改用Prim. Prim是这样的,先选一个点(这里选1)作为集合A的起始元素,然后其他点为集合B的元素,我们要做的就是 ...
- 最小生成树-Prim&Kruskal
Prim算法 算法步骤 S:当前已经在联通块中的所有点的集合 1. dist[i] = inf 2. for n 次 t<-S外离S最近的点 利用t更新S外点到S的距离 st[t] = true ...
- 邻接表c源码(构造邻接矩阵,深度优先遍历,广度优先遍历,最小生成树prim,kruskal算法)
graph.c #include <stdio.h> #include <stdlib.h> #include <limits.h> #include " ...
随机推荐
- 读懂IL代码就这么简单 (一)
一前言 感谢 @冰麟轻武 指出文章的错误之处,现已更正 对于IL代码没了解之前总感觉很神奇,初一看完全不知所云,只听高手们说,了解IL代码你能更加清楚的知道你的代码是如何运行相互调用的,此言一出不明觉 ...
- java并发:阻塞队列
第一节 阻塞队列 1.1 初识阻塞队列 队列以一种先进先出的方式管理数据,阻塞队列(BlockingQueue)是一个支持两个附加操作的队列,这两个附加的操作是:在队列为空时,获取元素的线程会等待队列 ...
- Node 进阶:express 默认日志组件 morgan 从入门使用到源码剖析
本文摘录自个人总结<Nodejs学习笔记>,更多章节及更新,请访问 github主页地址.欢迎加群交流,群号 197339705. 章节概览 morgan是express默认的日志中间件, ...
- js队列
用指针和数组模拟基本队列 http://blog.csdn.net/zhuwq585/article/details/53177192 js下的事件队列,或者异步队列 http://www.jb51. ...
- [BZOJ1143][CTSC2008]祭祀river(最长反链)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1143 分析: 最长反链==最小路径覆盖==n-二分图最大匹配数 某神犇对二分图的总结: ...
- VBPR: Visual Bayesian Personalized Ranking from Implicit Feedback-AAAI2016 -20160422
1.Information publication:AAAI2016 2.What 基于BPR模型的改进:在商品喜好偏序对的学习中,将商品图片的视觉信息加入进去,冷启动问题. 3.Dataset Am ...
- 使textarea支持tab缩进
//textarea支持tab缩进 $("textarea").on( 'keydown', function(e) { if (e.keyCode == 9) { e.preve ...
- 68 id -显示用户的id
Linux id命令用于显示用户的ID,以及所属群组的ID. id会显示用户以及所属群组的实际与有效ID.若两个ID相同,则仅显示实际ID.若仅指定用户名称,则显示目前用户的ID. 语法 id [-g ...
- /var/spool/clientmqueue 下生成太多文件处理
问题现象: linux操作系统中的/var/spool/clientmqueue/目录下存在大量文件. 原因分析: 系统中有用户开启了cron,而cron中执行的程序有输出内容,输出内容会以邮件形式发 ...
- yii2组件之下拉框带搜索功能(yii-select2)
简单的小功能,但是用起来还是蛮爽的.分享出来让更多的人有更快的开发效率,开开心心快乐编程. 如果你还没有使用过composer,你可就out了,看我的教程分享,composer简直就是必备神奇有木有. ...