题目链接: 传送门

Agri-Net

Time Limit: 1000MS     Memory Limit: 10000K

Description

Farmer John has been elected mayor of his town! One of his campaign promises was to bring internet connectivity to all farms in the area. He needs your help, of course.
Farmer John ordered a high speed connection for his farm and is going to share his connectivity with the other farmers. To minimize cost, he wants to lay the minimum amount of optical fiber to connect his farm to all the other farms.
Given a list of how much fiber it takes to connect each pair of farms, you must find the minimum amount of fiber needed to connect them all together. Each farm must connect to some other farm such that a packet can flow from any one farm to any other farm.
The distance between any two farms will not exceed 100,000.

Input

The input includes several cases. For each case, the first line contains the number of farms, N (3 <= N <= 100). The following lines contain the N x N conectivity matrix, where each element shows the distance from on farm to another. Logically, they are N lines of N space-separated integers. Physically, they are limited in length to 80 characters, so some lines continue onto others. Of course, the diagonal will be 0, since the distance from farm i to itself is not interesting for this problem.

Output

For each case, output a single integer length that is the sum of the minimum length of fiber required to connect the entire set of farms.

Sample Input

4
0 4 9 21
4 0 8 17
9 8 0 16
21 17 16 0

Sample Output

28

Prim算法O(V^2)

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int INF = 0x3f3f3f3f;
const int MAX_V = 105;
int edge[MAX_V][MAX_V];
int dis[MAX_V];
bool vis[MAX_V];
int N;

int prim()
{
    memset(dis,INF,sizeof(dis));
    memset(vis,false,sizeof(vis));
    for (int i = 1;i <= N;i++)
    {
        dis[i] = edge[i][1];
    }
    dis[1] = 0;
    vis[1] = true;
    int sum = 0;
    for (int i = 1;i < N;i++)
    {
        int tmp = INF,pos;
        for (int j = 1;j <= N;j++)
        {
            if(!vis[j] && tmp > dis[j])
            {
                tmp = dis[j];
                pos = j;
            }
        }
        if (tmp == INF) return 0;
        vis[pos] = true;
        sum += dis[pos];
        for(int j = 1;j <= N;j++)
        {
            if (!vis[j] && edge[pos][j] < dis[j])
            {
                dis[j] = edge[pos][j];
            }
        }
    }
    return sum;
}

int main()
{
    while (~scanf("%d",&N))
    {
        for (int i = 1;i <= N;i++)
        {
            for (int j = 1;j <= N;j++)
            {
                scanf("%d",&edge[i][j]);
            }
        }
        int res = prim();
        printf("%d\n",res);
    }
    return 0;
}

Prim算法O(ElogV)

#include<iostream>
#include<vector>
#include<queue>
#include<utility>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef __int64 LL;
typedef pair<int,int>pii;  //first  最短距离  second 顶点编号
const int INF = 0x3f3f3f3f;
const int MAX = 105;
struct edge{
    int to,cost;
    edge(int t,int c):to(t),cost(c){}
};
vector<edge>G[MAX];
int N,dis[MAX];
bool vis[MAX];

int prim()
{
    int res = 0;
    priority_queue<pii,vector<pii>,greater<pii> >que;
    memset(dis,INF,sizeof(dis));
    memset(vis,false,sizeof(vis));
    dis[1] = 0;
    que.push(pii(0,1));
    while (!que.empty())
    {
        pii p = que.top();
        que.pop();
        int v = p.second;
        if (vis[v] || p.first > dis[v]) continue;
        vis[v] = true;
        res += dis[v];
        for (int i = 0;i < G[v].size();i++)
        {
            edge e = G[v][i];
            if (dis[e.to] >  e.cost)
            {
                dis[e.to] = e.cost;
                que.push(pii(dis[e.to],e.to));
            }
        }

    }
    return res;
} 

int main()
{
    while (~scanf("%d",&N))
    {
        int tmp;
        for (int i = 1;i <= N;i++)
        {
            G[i].clear();
            for (int j = 1;j <= N;j++)
            {
                scanf("%d",&tmp);
                G[i].push_back(edge(j,tmp));
            }
        }
        int res = prim();
        printf("%d\n",res);
    }
    return 0;
}

Kruskal算法O(ElogV)

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int INF = 0x3f3f3f3f;
const int MAX = (105*105-105)/2;
struct Edge{
    int u,v,w;
};
int N,father[MAX],rk[MAX];
struct Edge edge[MAX];

bool cmp(Edge x,Edge y)
{
    return x.w < y.w;
}

void init()
{
    memset(father,0,sizeof(father));
    memset(rk,0,sizeof(rk));
    for (int i = 0;i <= N;i++)
    {
        father[i] = i;
    }
}

int find(int x)
{
    int r = x;
    while (father[r] != r)
    {
        r = father[r];
    }
    int i = x,j;
    while (i != r)
    {
        j = father[i];
        father[i] = r;
        i = j;
    }
    return r;
}
/*int find(int x)
{
    return x == father[x]?x:father[x] = find(father[x]);
}*/

void unite(int x,int y)
{
    int fx,fy;
    fx = find(x);
    fy = find(y);
    if (fx == fy)   return;
        if (rk[fx] < rk[fy])
        {
            father[fx] = fy;
        }
        else
        {
            father[fy] = fx;
            if (rk[x] == rk[y])
            {
                rk[x]++;
            }
        }

}

/*void unite(int x,int y)
{
    int fx = find(x),fy = find(y);
    if (fx != fy)
    {
        father[fx] = fy;
    }
}*/

int main()
{
    while (~scanf("%d",&N))
    {
        int tmp,cnt = 0,sum = 0;
        for (int i = 1;i <= N;i++)
        {
            for (int j = 1;j <= N;j++)
            {
                scanf("%d",&tmp);
                if (i < j)
                {
                    edge[cnt].u = i;
                    edge[cnt].v = j;
                    edge[cnt].w = tmp;
                    cnt++;
                }
            }
        }
        init();
        sort(edge,edge+cnt,cmp);
        for (int i = 0;i < cnt;i++)
        {
            int x,y;
            x = find(edge[i].u);
            y = find(edge[i].v);
            if (x != y)
            {
                unite(x,y);
                sum += edge[i].w;
            }
        }
        printf("%d\n",sum);
    }
    return 0;
}

POJ 1258 Agri-Net(最小生成树 Prim+Kruskal)的更多相关文章

  1. 最小生成树 Prim Kruskal

    layout: post title: 最小生成树 Prim Kruskal date: 2017-04-29 tag: 数据结构和算法 --- 目录 TOC {:toc} 最小生成树Minimum ...

  2. 邻接矩阵c源码(构造邻接矩阵,深度优先遍历,广度优先遍历,最小生成树prim,kruskal算法)

    matrix.c #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include < ...

  3. 数据结构学习笔记05图(最小生成树 Prim Kruskal)

    最小生成树Minimum Spanning Tree 一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边. 树: 无回路   |V|个顶 ...

  4. 布线问题 最小生成树 prim + kruskal

    1 : 第一种 prime     首先确定一个点 作为已经确定的集合 , 然后以这个点为中心 , 向没有被收录的点 , 找最短距离( 到已经确定的点 ) , 找一个已知长度的最小长度的 边 加到 s ...

  5. POJ 1258 Agri-Net(最小生成树,模板题)

    用的是prim算法. 我用vector数组,每次求最小的dis时,不需要遍历所有的点,只需要遍历之前加入到vector数组中的点(即dis[v]!=INF的点).但其实时间也差不多,和遍历所有的点的方 ...

  6. POJ 1258 Agri-Net (最小生成树)

    Agri-Net 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/H Description Farmer John has be ...

  7. POJ 1751 Highways(最小生成树&Prim)题解

    思路: 一开始用Kruskal超时了,因为这是一个稠密图,边的数量最惨可能N^2,改用Prim. Prim是这样的,先选一个点(这里选1)作为集合A的起始元素,然后其他点为集合B的元素,我们要做的就是 ...

  8. 最小生成树-Prim&Kruskal

    Prim算法 算法步骤 S:当前已经在联通块中的所有点的集合 1. dist[i] = inf 2. for n 次 t<-S外离S最近的点 利用t更新S外点到S的距离 st[t] = true ...

  9. 邻接表c源码(构造邻接矩阵,深度优先遍历,广度优先遍历,最小生成树prim,kruskal算法)

    graph.c #include <stdio.h> #include <stdlib.h> #include <limits.h> #include " ...

随机推荐

  1. osx开发,skport项目记录

    最近在研究前端框架,学习了一下vue.js,而后找到了element.js,后来又了解到了cooking···前端开发真是三天小更新,一周大变样,一个月天翻地覆啊··· 期间在使用cooking时遇到 ...

  2. php基础入门

    一.序言 由于新公司的需要,我也就从原来的asp专向了,php的学习中.希望通过自己的学习能够尽快的熟悉了解php 二.php独特的语法特色  1.引号问题 在php中单引号和双引号的作用基本相同,但 ...

  3. 【CSS】 background

    background: #22b4ff //背景色 url("http://images.cnblogs.com/cnblogs_com/oiliu/529256/o_titleIMG.jp ...

  4. JS 获取上一层目录

    派生到我的代码片 <script type="text/javascript"> //返回当前工作目录 function GetCurrDir(){ var pathN ...

  5. PHP ElasticSearch的使用

    系统是Windows server 2003. ElasticSearch是一个基于Lucene的稳定的.分布式.RESTFul的搜索引擎.其实所谓的RestFul就是它提供URL供你调用(建立索引和 ...

  6. [转]浅谈jQuery EasyUI的属性设置

    原文地址:http://www.easyui.info/archives/1664.html 对jQuery EasyUI有一定了解的话,应该知道基本上每一个组件都有一个"options&q ...

  7. 【BZOJ 2843】极地旅行社

    复习一下$LinkCutTree$的模板. #include<cstdio> #include<cstring> #include<algorithm> #defi ...

  8. lucene-查询query->QueryParser

    对于搜索引擎(比如Google和百度)来讲,很多情况下只需要用户在输入框内输入所需查询的内容,然后再单击“搜索”就可以了,其余的事情全部交给搜索引擎去处理,最后搜索引擎会把检索到的结果显示出来.那么搜 ...

  9. Jquery ui autocomplete简单api

    重要说明:与配置选项类似,Autocomplete插件的方法也不是直接调用,而且通过autocomplete()方法进行间接调用.例如: $("#title").autocompl ...

  10. 在MAC上搭建tomcat,再使用servlet时遇到的问题。

    说起来真是惭愧.在mac上配置tomcat环境时.tomcat6能正确运行.但是7,8都运行不了.具体表现是tomcat6访问127.0.0.1:8080可以显示那个界面,然而tomcat7和8都显示 ...