题目链接:http://vjudge.net/contest/143318#problem/B

题意:给定一个有向图,每条边都有一个权值。每次你可以选择一个结点v和一个整数d,把所有以v为终点的边的权值减小d,把所有以v为起点的边的权值增加d,最后让所有边的权值的最小值大于零且尽量大。

分析:

最小值尽量大,二分,最大不能超过最大边,要是最大边的话,其他边满足不了非负;

题意说的各种操作,他互不影响;也就变成了操作各边。

对于各点的操作来说:

令sum(u) 是作用于 u 上的所有 d 之和;

a—> b边的权值就是: w(a,b) +sum(a) - sum(b)>=x(答案);

对上式 变形: sum(b) - sum(a) <= w(a,b) -x;

sum(b) - sum(a) 就是对这条边的操作。

这就是一个差分约束系统。

枚举这个sum(b) - sum(a) ,要是有负环,就是查分系统无解。

没有负环,说明,这个最小值还可以大一点。

#include <bits/stdc++.h>
using namespace std; const int maxn = + ; struct Edge
{
int from,to;
double dist;
}; struct BellmanFord
{
int n, m;
vector<Edge> edges;
vector<int> G[maxn];
bool inq[maxn];
double d[maxn];
int p[maxn];
int cnt[maxn]; void init(int n)
{
this->n = n;
for(int i = ; i < n; i++) G[i].clear();
edges.clear();
} void AddEdge(int from, int to, double dist)
{
edges.push_back((Edge)
{
from, to, dist
});
m = edges.size();
G[from].push_back(m-);
} bool negativeCycle()
{
queue<int> Q;
memset(inq, , sizeof(inq));
memset(cnt, , sizeof(cnt));
for(int i = ; i < n; i++)
{
d[i] = ;
inq[] = true;
Q.push(i);
} while(!Q.empty())
{
int u = Q.front();
Q.pop();
inq[u] = false;
for(int i = ; i < G[u].size(); i++)
{
Edge& e = edges[G[u][i]];
if(d[e.to] > d[u] + e.dist)
{
d[e.to] = d[u] + e.dist;
p[e.to] = G[u][i];
if(!inq[e.to])
{
Q.push(e.to);
inq[e.to] = true;
if(++cnt[e.to] > n) return true;
}
}
}
}
return false;
}
}; BellmanFord solver; bool test(int x)
{
for(int i=; i<solver.m; i++)
{
solver.edges[i].dist -=x;
}
bool ret = solver.negativeCycle();
for(int i=; i<solver.m; i++)
{
solver.edges[i].dist +=x;
}
return !ret;
} int main()
{
int n,m;
while(scanf("%d%d",&n,&m)!=EOF)
{ solver.init(n);
int ub = ; for(int i=; i<m; i++)
{
int u,v,dist;
scanf("%d%d%d",&u,&v,&dist);
ub = max(ub,dist);
u--;
v--;
solver.AddEdge(u,v,dist);
} if(test(ub+)) puts("Infinite");
else if(!test()) puts("No Solution");
else
{
int L = , R = ub, ans = ;
while(L <= R)
{
int M = L + (R-L)/;
if(test(M)) //没有负环
{
ans = M;
L = M+;
}
else R = M-;
}
printf("%d\n", ans);
}
}
return ;
}

Uva 11478 Halum操作的更多相关文章

  1. UVA - 11478 - Halum(二分+差分约束系统)

    Problem  UVA - 11478 - Halum Time Limit: 3000 mSec Problem Description You are given a directed grap ...

  2. UVA 11478 Halum

    Halum Time Limit: 3000ms Memory Limit: 131072KB This problem will be judged on UVA. Original ID: 114 ...

  3. UVA 11478 Halum(用bellman-ford解差分约束)

    对于一个有向带权图,进行一种操作(v,d),对以点v为终点的边的权值-d,对以点v为起点的边的权值+d.现在给出一个有向带权图,为能否经过一系列的(v,d)操作使图上的每一条边的权值为正,若能,求最小 ...

  4. UVA 11478 Halum(差分约束)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=34651 [思路] 差分约束系统. 设结点u上的操作和为sum[u] ...

  5. UVA 11478 Halum (差分约束)

    题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...

  6. UVA - 11478 Halum 二分+差分约束

    题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=34651 题意: 给定一个有向图,每一条边都有一个权值,每次你可以 ...

  7. 训练指南 UVA - 11478(最短路BellmanFord+ 二分+ 差分约束)

    layout: post title: 训练指南 UVA - 11478(最短路BellmanFord+ 二分+ 差分约束) author: "luowentaoaa" catal ...

  8. 【Halum操作-UVA 11478】

    ·英文题,述大意:      输入有向图一个(什么边的端点啊,边权啊).每次可以选择一个节点和一个整数,然后把这个结点的出边边权加上该整数,入边边权减去该整数,目标:使得所有边的最小值非负且尽量大. ...

  9. Halum UVA - 11478 差分约束

    输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例#1: 复制 2 1 1 2 10 2 1 1 2 -10 3 3 1 2 4 2 3 2 3 1 5 4 5 2 3 4 4 2 5 3 ...

随机推荐

  1. 利用HTML5的一个重要特性 —— DeviceOrientation来实现手机网站上的摇一摇功能

      介绍之前做两个声明: 以下代码可以直接运行,当然你别忘了引用jQuery才行. <script> // DeviceOrientation将底层的方向传感器和运动传感器进行了高级封装, ...

  2. error CS0016: 未能写入输出文件

    win7 下解决办法: 1.打开C:\Windows ,找到 TEMP 文件夹 2. 进行权限设置,点击编辑,找到 IIS-User,勾选所有权限

  3. 【HDU1914 The Stable Marriage Problem】稳定婚姻问题

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1914 题目大意:问题大概是这样:有一个社团里有n个女生和n个男生,每位女生按照她的偏爱程度将男生排序, ...

  4. MyBatis简单实例

    ---直接贴代码 (1)User.Java package me.gacl.domain; /** * @author gacl * users表所对应的实体类 */ public class Use ...

  5. Python数据类型(3)

    字符串(str):单引号''.双引号""嵌套使用,可以不使用转义字符:'abc"dd"ef'."acc'd'12",字符串不可以是多行的三单 ...

  6. 【转】C#(ASP.Net)获取当前路径的方法集合

    转自:http://www.gaobo.info/read.php/660.htm //获取当前进程的完整路径,包含文件名(进程名). string str = this.GetType().Asse ...

  7. Nginx + php-fpm 执行 PHP 脚本超时 报错 502 Bad Gateway + 504 Gateway Time-out 的解决办法

    上周写好的发送邮件的计划任务只发送了一部分,检查计划任务日志,发现 502 Bad Gateway 的错误(已经在脚本中设置了 set_time_limit(0)). 后来在网上查找资料,可以通过以下 ...

  8. ios-model数据结构

    主要作用:简化VC代码,便于请求数据中字段的增.删.查.找,以及后期代码维护. 一.构建Model. 创建继承于NSObject的PlaceOrderModel #import <Foundat ...

  9. ios-改变button四个角的弧度

    -(void)createTitleView{ UIView * backview = [[UIView alloc]init]; backview.frame =CGRectMake(87*kHei ...

  10. [troubleshoot][archlinux][bcache] 修改linux文件系统 / 分区方案 / 做混合硬盘 / 系统转生大!手!术!(调整底层架构,不!重!装!)

    目标: 我要做的事情是:修改文件系统,硬盘分区方案,但是不重装系统,整个操作不被应用层感知. 背景: 我的笔记本 ThinkPad T450.8G内存 + 16GB SSD + 1TB HDD.预装w ...