HDU3629(凸四边形的个数)
题目描述:给你n个点(4~700), 问你能够成多少个不同的凸四边形。
解题报告:
暴力的话C(700,4)必然超时,发现,任何一个凹包必然是其中一点在其它3点构成的三角形内。
然后就考虑,能不能求出所有凹包的个数,然后用总数C(n, 4)减去凹包的个数,就是答案。
依次枚举每个点i,看看其它点能够成多少个包括点i的三角形,就是以这个点为中心的凹包的个数。
找三角形也要一定的技巧,也是通过逆向思维:找出有多少个三角形不包括点i,然后用总三角形个数C(n
– 1, 3) – 这个个数就是就是以这个点为中心的凹包的个数。
注意到,如果3个点不能圈住中心点,则必然是存在一条通过中心点的直线,使得这三个点都在直线的同侧。利用这个形式,我们用如下方法寻找三角形:
1:以中心点为中心,对剩余n-1个点极角排序。
2:依次处理排序后的n-1个点,对于每一个点i,依次往后扫描,找到第一个点j,是j和i的夹角大于180度。
3:那么点i + 1到点j
– 1的所有点都可以和点i构成不包括中心点的三角形。个数是
C(j – i – 1, 2)
具体算法如图:
注意到:如果每次找j点都从i点出发的话,那么算法就成了N3的复杂度了。其实每次的j点都是从上个j点之后开始的,降低一维复杂度。
自己以前没有注意到的代码技巧:
计算极角时,如果是负数(-pi ~ 0),就把它加上2 * pi,这样就把角度统一到了0~2pi。
另外,向这题顺次统计两个点的夹角时,由于会出现转了一圈的情况不好计算角度,所以在原来数组后面再顺次加上n-1一个点,角度同一加2pi,
for(int j = 0; j < n - 1; j++) ans[j + n - 1] = ans[j] + 2 * pi;
这样计算角度直接减就好了。
代码如下:
#include <iostream>
#include <string.h>
#include <algorithm>
#include <stdio.h>
#include <math.h> using namespace std;
typedef long long LL;
const int N = 750;
const double PI = acos(-1.0); struct Point
{
int x,y;
}; Point p[N];
double A[N];
int n; double angle(double x,double y)
{
double t = y - x;
if(t < 0) t += 2*PI;
return t;
} LL work()
{
LL t1 = (LL)n*(n-1)*(n-2)*(n-3)/24;
int t2,t3;
for(int i2=0;i2<n;i2++){
t2=(n-1)*(n-2)*(n-3)/6;
// int i4=0;
for(int i3=0,ans=0;i3<n;i3++){
if(i3!=i2)A[ans++]=atan2((double)(p[i3].y-p[i2].y),(double)(p[i3].x-p[i2].x));
}
sort(A,A+n-1);
/* for(int j=0,i=0; i<n-1; i++)
{
while(j<i+n-1)
{
if(angle(A[i],A[j%(n-1)])>PI) break;
j++;
}
t2 -= (LL)(j-i-1)*(j-i-2)/2;
}
t1 -= t2;
*/
// int t3=0;
for(int kk=0,k2=0;kk<n-1;kk++)//kk是原角
{
while(k2<kk+n-1){//相当于往后推
if(angle(A[kk],A[k2%(n-1)])>PI)break; //注意由于后推,k2要取余
k2++;//继续往后找
}
//这时确定过点kk 和另外两点(kk+1,k2-1);
//得到的三角形个数被扣去(C(k2-kk-1),2)
t2-=(k2-1-(kk+1)+1)*(k2-1-(kk+1))/2;
//接着继续 原角后推直到n-1;注意这里k2在之前基础上找就行了
}
t1-=t2;
} return t1;
} int main()
{
int T;
cin>>T;
while(T--)
{
cin>>n;
for(int i=0; i<n; i++)
cin>>p[i].x>>p[i].y;
cout<<work()<<endl;
}
return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
HDU3629(凸四边形的个数)的更多相关文章
- Moon Game (凸四边形个数,数学题)
Problem 2148 Moon Game Accept: 24 Submit: 61 Time Limit: 1000 mSec Memory Limit : 32768 KB Pro ...
- FZU Problem 2148 Moon Game (判断凸四边形)
题目链接 题意 : 给你n个点,判断能形成多少个凸四边形. 思路 :如果形成凹四边形的话,说明一个点在另外三个点连成的三角形内部,这样,只要判断这个内部的点与另外三个点中每两个点相连组成的三个三角形的 ...
- hdu 5365 Run(BC 50 B题)(求四边形的个数)
本来准备睡觉.结果还是忍不住想把它A了.由于已经看了题解了, 题意:就是给你一些坐标.都是整数,求一些正多边形的数目,官方题讲解是地球人都知道整数坐标构不成正三角形.正五边形和正六边形的... 然而我 ...
- 暴力(判凸四边形) FZOJ 2148 Moon Game
题目传送门 题意:给了n个点的坐标,问能有几个凸四边形 分析:数据规模小,直接暴力枚举,每次四个点判断是否会是凹四边形,条件是有一个点在另外三个点的内部,那么问题转换成判断一个点d是否在三角形abc内 ...
- HDU3629:Convex
传送门 求凸四边形的个数 转化成总数减去凹四边形的个数 凹四边形一定是一个三角形中间包含的另外一个点 那么枚举被包含的点,其它的对于这个点极角排序 被包含不好算,算总数减去不被包含的 枚举三角形的一个 ...
- ACM: FZU 2148 Moon Game - 海伦公式
FZU 2148 Moon Game Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64 ...
- bzoj 1913: [Apio2010]signaling 信号覆盖【旋转卡壳(?)】
参考:https://blog.csdn.net/qpswwww/article/details/45334033 讲的很清楚 做法比较像旋转卡壳但是具体是不是我也不清楚.. 首先知道只要求出每种方案 ...
- 【计算几何+极角排序+爆ll】E. Convex
https://www.bnuoj.com/v3/contest_show.php?cid=9147#problem/E [题意] 给定n个点的坐标,可以选择其中的四个点构造凸四边形,问最多能构造多少 ...
- hdu 3506 Monkey Party 区间dp + 四边形不等式优化
http://acm.hdu.edu.cn/showproblem.php?pid=3506 四边行不等式:http://baike.baidu.com/link?url=lHOFq_58V-Qpz_ ...
随机推荐
- STM32中EXTI和NVIC的关系
(1)NVIC(嵌套向量中断):NVIC是Cortex-M3核心的一部分,关于它的资料不在<STM32的技术参考手册>中,应查阅ARM公司的<Cortex-M3技术参考手册>C ...
- a simple game based on RT-Thread
[作品名称] a simple game based on RT-Thread [背景描述] 学了一段时间的嵌入式操作系统RT-Thread,发现是真的好用.于是想做一个小作品来锻炼巩固自己学习的知识 ...
- scala (3) Function 和 Method
scala 定义函数的关键字是 val 定义函数的通用格式是 val 函数名 = (参数列表)=> {函数体} object FunctionDemo { //通用的定义格式 val f1 ...
- spring-data-jpa快速入门(一)——整合阿里Druid
一.概述 官网:https://projects.spring.io/spring-data-jpa/ 1.什么是spring-data-jpa Spring Data JPA, part of th ...
- mypwd的编译和测试
pwd指令及其功能 命令格式: pwd [选项] 命令功能: 查看"当前工作目录"的完整路径 常用参数: 一般情况下不带任何参数 如果目录是链接时: 格式:pwd -P 显示出实际 ...
- # 2017-2018-1 20155224 加分项-实现mypwd
2017-2018-1 20155224 加分项-实现mypwd 1. 学习pwd命令 pwd命令以绝对路径的方式显示用户当前工作目录.命令将当前目录的全路径名称(从根目录)写入标准输出.全部目录使用 ...
- 20155321 《信息安全系统设计》课堂测试(ch06)
20155321 <信息安全系统设计>课堂测试(ch06) (单选题|1分)下面代码中,对数组x填充后,采用直接映射高速缓存,所有对x和y引用的命中率为() A .1 B .1/4 C . ...
- JavaWeb总结(七)
Web状态管理 - HTTP协议使用的是无状态的连接 - 对容器而言,每一个请求都来自于一个新的客户 解决方案-表单隐藏字段 <input type=”hidden” name=”session ...
- ZJOI2018 round^2 游记
Day0 一早起来6点左右,吃完早饭去班里拿了书包就来机房,说实话怕被打[手动滑稽]. 在车上大约经历了3个半小时的车程,终于到达了目的地:余姚.当然基本上大家的设备电量都不多了,除了某些上车睡觉的大 ...
- 3、计数排序,电影top100
1.计数排序 # -*- coding: utf-8 -*- # @Time : 2018/07/31 0031 11:32 # @Author : Venicid def count_sort(li ...