MapReduce编程之Map Join多种应用场景与使用
Map Join 实现方式一:分布式缓存
● 使用场景:一张表十分小、一张表很大。
● 用法:
在提交作业的时候先将小表文件放到该作业的DistributedCache中,然后从DistributeCache中取出该小表进行join (比如放到Hash Map等等容器中)。然后扫描大表,看大表中的每条记录的join key /value值是否能够在内存中找到相同join key的记录,如果有则直接输出结果。
DistributedCache是分布式缓存的一种实现,它在整个MapReduce框架中起着相当重要的作用,他可以支撑我们写一些相当复杂高效的分布式程序。说回到这里,JobTracker在作业启动之前会获取到DistributedCache的资源uri列表,并将对应的文件分发到各个涉及到该作业的任务的TaskTracker上。另外,关于DistributedCache和作业的关系,比如权限、存储路径区分、public和private等属性。

代码实现
package com.hadoop.reducejoin.test; import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.URI;
import java.util.Hashtable; import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.Reducer.Context;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner; /*
* 通过分布式缓存实现 map join
* 适用场景:一个小表,一个大表
*/
public class MapJoinByDistributedCache extends Configured implements Tool { /*
* 直接在map 端进行join合并
*/
public static class MapJoinMapper extends
Mapper<LongWritable, Text, Text, Text> {
private Hashtable<String, String> table = new Hashtable<String, String>();// 定义Hashtable存放缓存数据 /**
* 获取分布式缓存文件
*/
@SuppressWarnings("deprecation")
protected void setup(Context context) throws IOException,
InterruptedException {
Path[] localPaths = (Path[]) context.getLocalCacheFiles();// 返回本地文件路径
if (localPaths.length == 0) {
throw new FileNotFoundException(
"Distributed cache file not found.");
}
FileSystem fs = FileSystem.getLocal(context.getConfiguration());// 获取本地
// FileSystem
// 实例
FSDataInputStream in = null; in = fs.open(new Path(localPaths[0].toString()));// 打开输入流
BufferedReader br = new BufferedReader(new InputStreamReader(in));// 创建BufferedReader读取器
String infoAddr = null;
while (null != (infoAddr = br.readLine())) {// 按行读取并解析气象站数据
String[] records = infoAddr.split("\t");
table.put(records[0], records[1]);// key为stationID,value为stationName
}
} public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String line = value.toString();
String[] valueItems = line.split("\\s+");
// 使用下面一行将没有数据, StringUtils不能接正则,只能接分隔符
// String[] valueItems = StringUtils.split(value.toString(), "\\s+");
String stationName = table.get(valueItems[0]);// 天气记录根据stationId
// 获取stationName
if (null != stationName)
context.write(new Text(stationName), value);
} } public int run(String[] args) throws Exception {
// TODO Auto-generated method stub
Configuration conf = new Configuration(); Path out = new Path(args[2]);
FileSystem hdfs = out.getFileSystem(conf);// 创建输出路径
if (hdfs.isDirectory(out)) {
hdfs.delete(out, true);
}
Job job = Job.getInstance();// 获取一个job实例
job.setJarByClass(MapJoinByDistributedCache.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[2]));
// 添加分布式缓存文件 station.txt
job.addCacheFile(new URI(args[1]));
job.setMapperClass(MapJoinMapper.class); job.setOutputKeyClass(Text.class);// 输出key类型
job.setOutputValueClass(Text.class);// 输出value类型
return job.waitForCompletion(true) ? 0 : 1;
} public static void main(String[] args0) throws Exception {
String[] args = { "hdfs://sparks:9000/middle/reduceJoin/records.txt",
"hdfs://sparks:9000/middle/reduceJoin/station.txt",
"hdfs://sparks:9000/middle/reduceJoin/MapJoinByDistributedCache-out" }; int ec = ToolRunner.run(new Configuration(),
new MapJoinByDistributedCache(), args);
System.exit(ec);
}
}
MapJoinByDistributedCache
Map Join 实现方式二:数据库 join
● 使用场景:一张表在数据库、一张表很大。
另外还有一种比较变态的Map Join方式,就是结合HBase来做Map Join操作。这种方式完全可以突破内存的控制,使你毫无忌惮的使用Map Join,而且效率也非常不错。

MapReduce编程之Map Join多种应用场景与使用的更多相关文章
- MapReduce编程之Semi Join多种应用场景与使用
Map Join 实现方式一 ● 使用场景:一个大表(整张表内存放不下,但表中的key内存放得下),一个超大表 ● 实现方式:分布式缓存 ● 用法: SemiJoin就是所谓的半连接,其实仔细一看就是 ...
- MapReduce编程之Reduce Join多种应用场景与使用
在关系型数据库中 Join 是非常常见的操作,各种优化手段已经到了极致.在海量数据的环境下,不可避免的也会碰到这种类型的需求, 例如在数据分析时需要连接从不同的数据源中获取到数据.不同于传统的单机模式 ...
- MapReduce编程之wordcount
实践 MapReduce编程之wordcount import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Fi ...
- Swift函数编程之Map、Filter、Reduce
在Swift语言中使用Map.Filter.Reduce对Array.Dictionary等集合类型(collection type)进行操作可能对一部分人来说还不是那么的习惯.对于没有接触过函数式编 ...
- Python函数式编程之map()
Python函数式编程之map() Python中map().filter().reduce()这三个都是应用于序列的内置函数. 格式: map(func, seq1[, seq2,…]) 第一个参数 ...
- mapReduce编程之Recommender System
1 协同过滤算法 协同过滤算法是现在推荐系统的一种常用算法.分为user-CF和item-CF. 本文的电影推荐系统使用的是item-CF,主要是由于用户数远远大于电影数,构建矩阵的代价更小:另外,电 ...
- mapReduce编程之auto complete
1 n-gram模型与auto complete n-gram模型是假设文本中一个词出现的概率只与它前面的N-1个词相关.auto complete的原理就是,根据用户输入的词,将后续出现概率较大的词 ...
- mapReduce编程之google pageRank
1 pagerank算法介绍 1.1 pagerank的假设 数量假设:每个网页都会给它的链接网页投票,假设这个网页有n个链接,则该网页给每个链接平分投1/n票. 质量假设:一个网页的pagerank ...
- 并发编程之Fork/Join
并发与并行 并发:多个进程交替执行. 并行:多个进程同时进行,不存在线程的上下文切换. 并发与并行的目的都是使CPU的利用率达到最大.Fork/Join就是为了尽可能提高硬件的使用率而应运而生的. 计 ...
随机推荐
- go Context的使用
控制并发有两种经典的方式,一种是WaitGroup,另外一种就是Context WaitGroup的使用 WaitGroup可以用来控制多个goroutine同时完成 func main() { va ...
- Linux5下安装MySQL过程记录
磨砺技术珠矶,践行数据之道,追求卓越价值 回到上一级页面: PostgreSQL杂记页 回到顶级页面:PostgreSQL索引页 [作者 高健@博客园 luckyjackgao@gmail. ...
- 使用Nginx+uWSGI+Django方法部署Django程序
第一步先解决uwsgi与django的桥接.解决在没有nginx的情况下,如何使用uwsgi+DJANGO来实现一个简单的WEB服务器. 第二步解决uwsgi与Nginx的桥接.通过nginx与uws ...
- 基于Keras的imdb数据集电影评论情感二分类
IMDB数据集下载速度慢,可以在我的repo库中找到下载,下载后放到~/.keras/datasets/目录下,即可正常运行.)中找到下载,下载后放到~/.keras/datasets/目录下,即可正 ...
- jsp手动分页
注意: sql语句要写对,jsp显示 List 时的 item的字段名要写对 这里 where uid 要放在前面才能成功执行,否则会报错 , 在写items的时候,如果controller里面已经写 ...
- jquery.validata1.11怎么支持metadata
使用metadata方式这个需要使用jquery.metadata.js插件才可工作,通过在表单项中定义特殊的属性来指定验证规则 但是最新的jquery.validate 1.11没有内置metada ...
- flask之URL和视图(一)
1.Flask URL和视图 1.1.第一个flask程序 from flask import Flask #创建一个Flask对象,传递__name__参数进去 app = Flask(__name ...
- [VB.NET][C#]调用API获取或设置键盘按键状态
前言 通过 C# 或 VB.NET,你只需编写少量的代码即可实现一个按键精灵. 第一节 接口 调用系统 API 实现获取或设置指定的按键状态. 获取按键状态 调用 GetAsyncKeyState() ...
- nginx遇到的配置问题
配置的例子如下: server { listen ; server_name localhost; #kzjtrans-web location /kzjtrans-web/ { proxy_pass ...
- 随机图片api
什么是随机图片api 随机图片api是什么呢?通俗的讲就是当你访问一个api时,浏览器会随机返回给你一张图片. 其实原理很简单,把你要随机的图片放在一起,然后写一个php,当php被访问时,就随机指向 ...